复合土钉墙在深基坑支护中的应用

复合土钉墙在深基坑支护中的应用

一、复合土钉墙在深基坑支护中的应用(论文文献综述)

邹正[1](2021)在《复杂环境下综合管廊深基坑支护优选及监测》文中研究表明城市综合管廊凭借其能高效和模块化使用地下空间的优越性,在我国大中型城市中得到了大力推广和建设。其基坑开挖施工通常会在地下管线错综复杂、毗邻构筑物及道路等复杂环境下进行,这对基坑支护结构的选择和使用提出了较高要求。本文在综述综合管廊基坑相关研究现状的基础上,概述了基坑支护主要类型及基坑变形形式;以成都市科学城北路综合管廊K0+260~K0+580标段深基坑工程为研究背景,采用模糊层次分析法(FAHP)建立了支护结构评价体系,在备选方案中决策出了最优方案;使用Midas GTS NX软件对最优方案下的基坑施工建立了有限元模型并进行了模拟计算,对基坑支护位移及地表变形进行了讨论;在施工全过程中对综合管廊毗邻构筑物开展了沉降监测及分析工作。通过上述研究分析可以说明:采用模糊层次分析法能够较好地对复杂环境下综合管廊深基坑支护结构进行量化评比和决策,数值模拟能对最优支护方案下施工的风险节点进行预估并验证了优选方案的可行性,监测证明最优方案下进行基坑开挖对毗邻桩基础高层建筑的影响安全可控。论文提供了一种在复杂环境下进行综合管廊深基坑支护选型的决策方式,并进行了科学验证;研究的相关方法和结论可为类似的综合管廊基坑工程建设起到一定的参考和借鉴作用。

陈艳平[2](2021)在《某深基坑桩锚支护与土钉墙支护结构的受力变形分析》文中研究指明近年来,深基坑支护方案的选择随着城市化进程的加快和社会经济技术的快速发展而越来越多,科学合理的选择基坑支护方案在控制工程质量、施工安全和经济成本上尤为重要。在石家庄某深基坑工程案例的研究背景下选择土钉墙和桩锚组合两种支护结构,分别进行稳定性分析验算。针对桩锚组合和土钉墙两种支护方案,将Plaxis 3D数值模拟的结构变形与实际工程监测的支护结构变形进行对比,验证实际工程中选择桩锚支护的优势和合理性。论文的主要工作和取得的成果如下:(1)在实际工程的基础上,选择桩锚组合支护和土钉墙支护进行稳定性分析。(2)选用Plaxis 3D岩土工程通用有限元模拟软件分别模拟土钉墙和桩锚组合两种支护方案。结合模拟过程中的应力和位移云图,给出基坑开挖支护过程中的变化规律。(3)以第一层最北侧边上土钉T1和第一层中间的土钉T2为例,分析研究开挖过程中土钉受力情况。随着基坑的开挖和土钉墙的设置,土钉的轴力从顶部向尾部逐渐扩展;中间土钉所受的力明显高于边上土钉。(4)通过对比分析监测数据值和两种支护方案的模拟值发现,桩锚组合支护结构更加安全,验证了该项目选择桩锚组合支护的安全性,同时也说明了plaxis 3D岩土工程有限元软件数值模拟的可靠性。

张传虎[3](2021)在《西宁某深基坑土钉墙支护数值模拟与现场监测》文中提出伴随着我国城市化水平的提高和城市人口的急剧性增加,城市可供开发使用的土地面积也随之日益减少。“十四五”前期我国提出以经济社会发展要以立足资源环境承载能力为基础,发挥各地优势,逐步向城镇化方向进展,进一步优化重大基础建设,这便驱使现代城市建设要向高层建筑、大型市政设施、地下空间等方面进行发展,深基坑应用越加广泛。但近年来由于基坑支护方式选择的不严谨,造成了越来越多的工程事故或资源的浪费,目前针对深基坑去探讨一类安全可靠、高效经济、环境友好的支护结构有着重大研究意义。本文基于存在此类问题的背景下,选择开挖深、影响范围广、支护成本高的西宁某深基坑工程为研究实例,其主要内容和结论包括以下几个方面。(1)在比较分析适用于深基坑的各种围护和支撑结构的特点及优劣的基础上,结合西宁某深基坑的地质、水位及周边建筑物等要素特点,对该深基坑进行支护结构设计。选择适用于本基坑施工支护的不同方案,利用经验加权评分法对几种适合方案进行优选,确定合适的支护方案。(2)在支护方案确定之后,利用理正深基坑软件对优选方案进行定量分析,验算了优选方案的合理性,同时介绍土钉墙的施工步骤及受力原理,采用合理的降水方案,避免地下水对基坑开挖产生影响。(3)针对西宁某深基坑开挖过程,采用MIDAS/GTS NX有限元软件对该基坑进行模拟分析。结合分析基坑周围土体沉降、水平位移、土钉轴力以及坑底抗隆起等基坑变形和受力特点,验证了该工程选型思路的可行性以及关键参数确定的合理性。同时利用该软件对基坑支护方式进行细节优化,分析出这些细节因素对基坑结构的安全性及稳定性的影响,理出土钉长度、角度等对基坑支护安全影响的规律,找到一个最优方案。(4)在基坑施工过程中,对基坑进行监测并将监测数据整理,同时将监测结果与模拟结果进行对比分析,找出差异,验算设计过程中计算结果的可靠性,实时对支护方案进行优化,避免因前期勘察不到位而引发基坑事故。该深基坑工程支护结构设计及优化的成功经验具有一定的实用价值,可为类似的复杂基坑支护结构设计与监测提供借鉴。图[69]表[10]参[61]

潘建邦[4](2021)在《某深基坑支护结构设计及参数化分析》文中进行了进一步梳理本文以沈阳市某综合楼为工程背景对土钉墙支护、桩锚支护两种支护形式进行研究。首先用理正深基坑软件设计此基坑工程方案,检测变形是否满足安全需求,确定出合理的方案后,利用PLAXIS对两种支护方式进行参数调整,分析各参数变化对支护结构的影响程度,并找到监测报警值的临界点及分析趋于变形稳定的参数的变化曲线,为此类基坑工程设计给出合理的建议。论文工作及研究成果如下:(1)比较深基坑支护中各种支护形式的特点及其适用条件,着重研究更适合该工程的土钉墙支护形式与桩锚支护形式。(2)针对沈阳市某综合楼深基坑工程,通过结合该工程所处区域的地质条件、考虑对周边环境的影响以及施工技术的成熟度选用了对该工程更适合的桩锚及土钉墙两种支护方案。利用理正软件选用这两种支护方案对该基坑工程进行方案设计,分别得到了更安全、经济的设计方案,然后从结构稳定性和对周边环境的影响这两个方面综合分析,对两种设计方案各自的优缺点进行比对。土钉墙支护相较于桩锚支护,抗隆起稳定性更安全而且施工时对周边的环境影响更小,但在整体稳定性方面不如桩锚支护。(3)通过PLAXIS有限元软件,建立沈阳市某综合楼深基坑工程的基坑剖面模型,分析了支护桩的嵌固长度变化及锚杆总长度的变化对桩锚支护体系的影响;模拟结果得出水平与竖向位移相对较小,在基坑监测的规范预警临界值上下变化。在土钉墙支护部分,首先研究了土钉长度变化,发现降低该参数对支护结构性能所造成的影响依然不大,没有达到破坏的程度,安全储备较高。因此又分析了土体的粘聚力参数变化对土钉墙支护结构性能的影响,通过对比应力变化、位移变化、塑性点分布等因素,找到了粘聚力变化使土体发生破坏的临界点,所以粘聚力的变化对基坑工程的安全影响是很大的,常见的导致粘聚力的变化因素就是含水率的变化,所以在基坑施工过程中,排水的设计一定要做到万无一失,并且不要在雨季施工。

赵永志[5](2021)在《软弱土层深基坑支护中加强型土钉墙的应用》文中研究表明在土层厚度不超过10 m的软弱土层深基坑的支护施工中,由于土钉墙具有显着的经济性、可靠性和安全性等优势,它们在当前的支护过程中被广泛使用。传统的土钉墙不能单独用于土质差的深基坑中,而加强型土钉墙在深基坑支护方面具有相对较好的效果。本文对软弱土层深基坑支护中加强型土钉墙的应用进行探讨,希望能为业界同行提供参考。

冯晶[6](2020)在《高层住宅深基坑支护施工安全风险评估》文中研究说明随着我国经济的迅猛发展,城市的发展对空间的需求也逐渐增加,高层建筑逐渐向地下深、地上高的趋势发展,深基坑工程逐渐兴起。深基坑工程随着在开挖规模和深度上不断增加,其施工难度和存在的风险也逐渐的增大。一旦产生事故不仅造成巨大的经济损失,对人民生命安全也造成严重威胁,且延误施工工期,还将引发周边建筑物倒塌和地下管网破坏,造成恶劣的社会影响。论文通过对高层住宅深基坑支护工程施工阶段的风险进行识别、评估研究,以期提出预防深基坑工程事故的有效措施,优化深基坑工程施工管理环境和风险防控。深基坑施工是集开挖、支护和监控量测为一体多学科交叉的复杂系统工程。施工条件艰苦、工艺复杂,存在许多威胁深基坑正常施工的风险。论文主要采用的深基坑风险分析过程为风险识别-风险评估-风险应对。(1)在风险识别环节,建立了基于模糊互补判断矩阵排序原理的深基坑工程施工风险识别模型,并运用该模型识别出了深基坑施工阶段潜在的风险因素、支护桩+预应力锚索施工方案风险、土钉墙支护风险、预应力锚索风险、基坑支护监测风险和周边环境等风险中主要的风险因素。其中,深基坑施工阶段潜在的主要风险因素是:勘察范围和深度不足、试验结果不准确、对现场实际情况了解不到位、单纯以勘查报告为依托;支护桩+预应力锚索支护方案主要风险因素是:定位放线偏差、护筒埋置偏差、桩孔偏移倾斜和孔底沉渣过多;土钉墙支护方案的主要风险因素是:土钉成孔布置、土钉杆体放置和孔内注浆和喷射混凝土;预应力锚索施工主要风险因素为:杆体设置、孔内注浆和锚杆张拉等;基坑支护监测阶段主要的风险因素有:监测力度过低、监测预报不及时和检测精度不足。(2)在风险评估环节,通过优化模糊隶属度的确定方法,建立了深基坑工程施工风险模糊综合评估模型。以庆阳市西峰区紫峰大厦深基坑支护工程作为风险评价对象,依据风险识别结果矩阵,对深基坑支护工程从勘察、设计和施工阶段的每个风险因素集进行了专项评估,得出了专项风险等级,并对每个专项评估结果最为风险指标进行总体风险进行了评估,得出整个项目中风险产生的几率。结果显示支护桩+预应力锚索施工方案风险、预应力锚索风险、基坑支护监测风险处于Ⅳ级(高)风险,其他风险要素都处于中等风险;项目总体风险介于中等风险与高风险之间。针对风险产生的原因给出了施工风险的应对措施。

张欢[7](2020)在《延吉地区深基坑支护技术的研究与应用》文中研究表明深基坑的支护技术现在已屡见不鲜,全国不同区域不同土质的基坑都有着较为成功的案例以及经验,可以说部分工程俨然达到了国际领先水平,但并不意味着没有问题需要进一步的研究与改善。深基坑支护施工中经常存在的问题如下:1、区域性比较强、综合性比较强;2、土层的开挖与边坡的支护方式无法契合;3、边坡的施工无法满足设计、规范要求;4、施工过程与设计的差异太大。本课题结合延吉地区相关地质勘测和室内试验数据同时将周围环境等其他不同的影响因素综合分析考虑,对深基坑支护方法的选择、设计和施工进行了系统的分析、研究,本文的研究内容和技术路线如下:延吉地区的特殊岩土的属性给延吉地区深基坑的建设增加了难度和复杂性,这给延吉地区经济建设的迅速发展造成了一定的问题。对于延吉地区的深基坑支护项目,必须适应当地情况,并制定与区域的土壤特征和工程需要相适应的支护计划,并具有一定的区域特征。同时城市经济建设的发展也给基坑的支护提出了更高的要求。为了研究适用于延吉地区的经济合理的支持方法,本文主要从以下几个方面开展工作:通过大量文献的参考和实际调查,总结了延吉地区深基坑支护的工程技术形式和特点。详细介绍了延吉地区常用支护形式的工作原理,设计计算方法,适用性以及优缺点。通过工程实例,根据现场工程地质条件,周围建筑物荷载情况和现场的物理条件,选择力学性能等相关参数,制定相应的支护方案,设计具体的支护形式。通过现场变形的监测,沉降监测和监测的结果来分析,从而获得基坑顶部的水平的方向和沉降变形的特点,并作为依据对它的变形进行进一步的预测。

赵永[8](2020)在《砂卵石地层深基坑支护参数设计 ——以云南省勐腊县南腊河调蓄池基坑支护为例》文中研究指明随着我国经济的快速稳步发展,城市建设的规模不断扩大,例如公共交通、地下商业街、高层住宅等工程建设不断推进。随之而来的是城市土地资源愈发紧张,城市空间的发展注意力也逐渐转变至发展地下空间,形成一个立体化的城市。目前出现越来越多的开挖面积大,深度大的基坑,但基坑开挖也出现了一些惨痛的案例,如何保证基坑开挖过程中稳定,不会造成对周边建筑物的影响和地表沉降就显得尤为重要。深基坑支护是一个及其复杂的工程,牵涉到土力学、结构力学和材料力学等复杂的学科,国内外一些专家学者对基坑支护的研究也取得了很多成果。但在砂卵石地层基坑建设中如何正确合理的选择基坑支护类型却存在疑问,因此,文章以云南省勐腊县南腊河调蓄池基坑支护项目为工程背景,通过实地考察、地勘资料分析、支护结构理论分析及数值模拟等手段,对砂卵石地层基坑支护的设计理论与方法、南腊河调蓄池基坑支护类型的选择及不同工况下的类型受力情况进行分析,取得以下研究成果:(1)南腊河调蓄池基坑选址处的主要地层构成为:砾砂、卵石及残坡积层覆盖。易造成基坑支护支挡结构发生变形和周围地表沉降,其产生原因均是支护结构支撑力不足。同时应考虑基坑所在地质条件对设计、施工进行良好把控优化设计参数;(2)整理并分析基坑支护方案的比选方法,并分析各方法的适用性。对云南省勐腊县南腊河调蓄池基坑支护项目工程概况及水文地质条件的相关内容进行介绍,指出基坑位于砂卵石地层且基坑深度达到10m。分析得出适用于云南省勐腊县南腊河调蓄池基坑的支护方案为桩锚支护方案;(3)基坑在开挖过程中,侧壁向基坑开挖侧产生位移,基坑顶部侧移量较小,随着埋深的增加侧移量增加;坑外土体的沉降呈“倒三角”型,在基坑边发生最大沉降量,影响范围主要在距基坑10米处;在基坑开挖过程中支护结构变形规律为:随着基坑开挖的推进,桩身应力逐渐增大的同时最大应力点逐渐发生下移,故在实际施工中要加强对基坑底部桩基的支护和监测频率;在基坑开挖过程中,施加锚杆可以减小基坑侧壁的侧移量值,上排锚杆的受力明显大于下排锚杆且在卵石地层中采用预应力锚杆支护效果不明显;改变桩身嵌固深度对基坑位移的控制效果最佳,增加桩身强度控制效果次之。

唐苏武[9](2020)在《微型桩-土钉复合支护结构的力学特性及工程应用研究》文中进行了进一步梳理微型桩复合土钉支护结构是复合支护结构形式的一种,一般由微型桩、冠梁、土钉、面层、原始土体等部分构成,形成具有一定抗剪、抗拉、抗弯、抗压能力的复合支护体系。该体系适用于土质松散、自立性较差的地层、对基坑变形有一定控制要求或者坡顶有较大施工荷载的情况。因其具有造价低、施工简单快捷、场地作业面要求低、能满足一定安全性能,故在建筑工程中得到了广泛应用与发展。微型桩复合土钉支护结构在实际工程中应用时间较晚,目前没有成熟的计算体系,在基坑支护工程设计中普遍没有考虑到施工开挖过程对微型桩、土钉、冠梁、基坑内外土体等因素变形的影响,也没有考虑施工荷载对各个因素的影响。因此,研究微型桩-土钉复合支护结构在施工过程中的力学特性,对验证该类型支护结构的安全性、适用性具有重要的现实意义。本文以长沙市某健康产业园基坑工程为背景,应用理正结构设计软件对基坑支护方案进行计算、设计与验证,结合MIDAS GTS有限元软件对微型桩-土钉支护结构体系在施工过程中力学特性进行研究,得到一些有意义结论。对工程实际应用进行整体部署,给今后的类似工程提供一定参考价值。主要研究内容如下:(1)微型桩-土钉复合支护结构选型与设计研究。对地形地貌、地层岩性、水文地质条件进行详细分析,根据基坑背侧为城市市政道路,无放坡空间等特点参照相关设计要求及规范,对基坑支护方案进行科学选型和设计。应用理正深基坑支护结构设计软件,加入坡线、土层、超载、土钉、花管等参数,计算得出基坑支护抗拔承载力结果,并进行设计。(2)微型桩-土钉复合支护结构在施工过程中变形与力学特性研究。冠梁、微型桩、土钉、基坑内外土体的变形位移都随着开挖深度的增加而增加,其中冠梁变形位移远小于基坑不支护的状态;微型桩最大水平位移在靠近桩底位置,最大竖向位移在靠近桩顶位置;土钉水平和竖直方向上的变形位移基本呈线性关系,位于土钉端头位置;基坑外土体变形以沉降为主,从基坑边往外,逐渐增加,然后逐渐变小,形成漏斗状;基坑内土体基本表现为隆起状。(3)施工开挖对基坑边坡作用影响研究。随着开挖深度逐渐增加,坡面水平向和竖向变形逐渐增大,但基坑开挖四个工况中的坡面变形值均小于规范报警值,说明微型桩、土钉、冠梁等支护结构的相互作用能有效限制坡面的变形。(4)微型桩-土钉复合支护结构在坑边施工荷载影响下的变形与力学特性研究。冠梁在施工荷载增大后朝基坑内侧水平方向变形增大,竖向变形减小,冠梁主应力线型增加关系;微型桩在施工荷载增大后基坑内侧水平方向变形增大,竖向变形减小,微型桩主拉应力在一定区间波动,主压应力呈线型增长关系;土钉在施工荷载增大后基坑内侧水平方向变形增大,竖向变形减小,土钉轴力和主拉应力均呈现线型增长趋势;基坑外土体竖向变形随施工荷载增加呈现线型增长趋势,基坑内土体竖向变受施工荷载影响较小。

陈浩[10](2019)在《止水支护联合结构在软土地层基坑支护中的应用研究》文中进行了进一步梳理改革开放以来,我国沿海城市发展迅速,土地利用率逐渐增高,则对基坑的要求也越来越高。软土在沿海地区的地层中非常常见,且因其土压力大、内聚力小、易变形的特点,导致在软土地层中进行基坑支护异常困难,基坑支护技术要求也要不断提升。因此在软土地层中进行基坑支护方案的选择尤为重要,好的支护方案不仅能保证工程安全,还能降低造价。本文主要讨论了软土的定义及其特点,并总结了软土地层中常用的基坑支护方法,主要有搅拌桩+锚索支护、土钉墙支护、重力式挡土墙支护等方法,通过结合这些支护方法,确定出止水支护联合结构的组合形式,探究其优缺点,其优点主要包括止水结构承担支护功能、利用场地少、施工速度快、造价低、与土建结构空间优;缺点主要是刚度低、变形较大,易开裂滑移、对施工的质量和桩的强度要求更高。探究了该结构的适用性,该结构主要应用于沿海软土地层深度不大于8m的基坑。通过分析其他支护形式的计算理论,找到符合该结构的计算方法,通过对比分析,该结构与SMW工法比较相像,因此该结构的计算理论主要是采用SMW工法的计算理论,并将该结构应用于实际的基坑支护项目中,在实际基坑支护中使用该结构时,建议使用理正深基坑等软件对基坑进行计算。本文以将止水支护联合结构应用于三个基坑的基坑支护实例中。在重力式水泥土墙与土钉墙联合支护的基坑中,基坑参数的计算使用理正深基坑设计软件进行计算,详细描述了该结构在基坑中的施工过程,施工完成后分析该基坑的监测数据,通过对比分析监测数据与软件模拟的基坑情况,来分析该结构在基坑支护中的可行性。在实际监测数据中,围护顶部的最大水平位移为8mm,最大竖向位移为15mm,周边地表位移最大值在140mm左右,支撑轴力最大值在6000KN左右,裂缝监测最大值约6mm,围护结构深层的水平位移最大值为40mm,出现在地下5m8m处。通过与软件计算模拟的基坑数据对比,周边地表位移量相差较大,通过分析,其原因为软件模拟基坑载荷小于实际载荷。在三轴搅拌桩与土钉墙联合支护的基坑中,基坑支护的的施工过程中出现了基坑漏水事故,通过分析了该基坑中的漏水事故,总结其漏水原因,从而探讨出水泥土搅拌桩的适用性。且在排桩、放坡与土钉墙联合支护的基坑中,该结构也起到了良好的支护效果。通过止水支护联合结构在三个实例中的应用,找出该结构的不足点,进而加以改进。探讨了该结构在软土地层基坑支护中的适用性,验证了理论技术的正确性,对其他的基坑支护工程提供类似的工程经验。

二、复合土钉墙在深基坑支护中的应用(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、复合土钉墙在深基坑支护中的应用(论文提纲范文)

(1)复杂环境下综合管廊深基坑支护优选及监测(论文提纲范文)

摘要
abstract
1 绪论
    1.1 研究背景及意义
    1.2 国内外研究现状
    1.3 研究内容及研究方法
2 基坑支护主要类型及基坑与地面变形
    2.1 基坑支护主要类型
    2.2 基坑与地面变形形式
    2.3 本章小结
3 复杂环境下综合管廊深基坑支护优选
    3.1 工程概况
    3.2 综合管廊深基坑支护优选方法
    3.3 FAHP评价体系的建立
    3.4 基于FAHP的综合管廊深基坑支护选型
    3.5 本章小结
4 复杂环境下综合管廊深基坑支护数值模拟研究
    4.1 Midas GTS NX软件简介
    4.2 综合管廊深基坑计算模型的建立
    4.3 数值模拟计算结果分析
    4.4 本章小结
5 综合管廊深基坑临近建筑物监测研究
    5.1 监测目的及原理
    5.2 监测方案
    5.3 监测数据分析
    5.4 模拟结果与监测数据对比分析
    5.5 本章小结
6 结论与展望
    6.1 结论
    6.2 展望
参考文献
致谢
在校期间的科研成果

(2)某深基坑桩锚支护与土钉墙支护结构的受力变形分析(论文提纲范文)

摘要
abstract
第一章 绪论
    1.1 选题背景
    1.2 研究目的及意义
    1.3 研究现状
        1.3.1 桩锚组合支护和土钉墙支护理论研究现状
        1.3.2 桩锚组合支护结构和土钉墙工程应用研究现状
        1.3.3 桩锚组合支护和土钉墙数值模拟研究现状
    1.4 本文主要研究内容
    1.5 技术路线与创新点
第二章 土钉墙和桩锚支护的设计理论
    2.1 土钉墙支护的基本原理
        2.1.1 土钉墙的作用机理
        2.1.2 土钉墙支护计算分析
        2.1.3 土钉墙整体稳定性验算
    2.2 桩锚组合支护的基本原理
        2.2.1 桩锚组合支护的作用机理
        2.2.2 桩锚支护计算分析
        2.2.3 桩锚支护稳定性验算
    2.3 本章小结
第三章 土钉墙和桩锚支护稳定性计算分析及基坑监测
    3.1 工程概况
    3.2 工程地质概况
    3.3 基坑支护设计方案
        3.3.1 设计条件
        3.3.2 设计参数
    3.4 基坑支护稳定性计算分析
        3.4.1 土钉墙支护的稳定性计算分析
        3.4.2 桩锚组合支护的稳定性计算分析
    3.5 基坑监测
        3.5.1 监测目的
        3.5.2 监测内容
        3.5.3 监测工作部署
        3.5.4 监测结果
    3.6 本章小结
第四章 深基坑受力变形数值模拟分析
    4.1 Plaxis3D软件介绍
        4.1.1 各种单元模拟
        4.1.2 土体硬化模型
    4.2 Plaxis3D模型的建立
        4.2.1 参数选取
        4.2.2 桩锚组合支护模型
        4.2.3 土钉墙支护模型
    4.3 数值模拟结果分析
        4.3.1 数值模拟值与监测值对比分析
        4.3.2 水平位移对比分析
        4.3.3 竖向位移对比分析
    4.4 桩锚支护结构参数优化分析
        4.4.1 桩径的优化
        4.4.2 桩的嵌固深度的优化
    4.5 本章小结
第五章 结论与展望
    5.1 结论
    5.2 展望
参考文献
致谢
个人简介及攻读硕士学位期间取得的科研成果

(3)西宁某深基坑土钉墙支护数值模拟与现场监测(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 选题背景
    1.2 研究意义
    1.3 国内外深基坑研究现状
        1.3.1 深基坑支护理论研究现状
        1.3.2 土钉墙支护理论研究现状
    1.4 研究内容及方法
    1.5 技术路线图
第二章 深基坑支护结构设计和稳定性计算理论
    2.1 深基坑支护结构形式
        2.1.1 自然放坡
        2.1.2 土钉墙支护
        2.1.3 地下连续墙+内支撑
        2.1.4 SWM工法桩
        2.1.5 钻孔灌注桩+锚杆支护结构
    2.2 深基坑支护结构土压力
        2.2.1 静止土压力
        2.2.2 朗肯土压力
    2.3 深基坑变形分析
        2.3.1 围护结构变形分析
        2.3.2 深基坑抗隆起分析
        2.3.3 地表沉降分析
        2.3.4 抗管涌分析
    2.4 支护结构计算理论
        2.4.1 弹性地基梁法
        2.4.2 经典法
        2.4.3 有限单元法
第三章 基坑工程概况及支护方案的选择
    3. 1 工程概况
        3.1.1 工程及周边环境介绍
        3.1.2 场地工程地质条件
        3.1.3 基坑安全等级和使用年限的确定
        3.1.4 基坑超载参数确定
    3.2 施工方案的影响因素
        3.2.1 设计方案要有安全可靠性
        3.2.2 考虑施工的便利性
        3.2.3 在基坑安全可靠的基础追求经济合理
        3.2.4 考虑施工对环境的影响
        3.2.5 满足施工工期要求
    3.3 采用经验加权评分法优选方案
        3.3.1 基本原理
        3.3.2 确定基坑支护的重要度权数
        3.3.3 评定各方案对各评价项目的满足程度评分
        3.3.4 计算各方案的评分权数和及选出最优方案
    3.4 工程支护方案
    3.5 小结
第四章 支护方案的定量分析与土钉墙施工要点
    4.1 利用理正深基坑对基坑支护方案定量分析
        4.1.1 理正深基坑软件F-SPW介绍
        4.1.2 土钉墙支护方案定量分析
    4.2 基坑开挖步骤
        4.2.1 基坑降水
        4.2.2 做好土方开挖的前期准备工作
        4.2.3 分层开挖的施工工序
    4.3 土钉墙支护结构的作用机理
    4.4 土钉墙支护施工
        4.4.1 施工准备
        4.4.2 施工步骤
    4.5 小结
第五章 基坑开挖支护数值模拟分析与优化
    5.1 MIDAS/GTS NX有限元程序概述
        5.1.1 MIDAS/GTS NX软件介绍
        5.1.2 MIDAS/GTS软件的操作步骤
    5.2 模型建立
        5.2.1 基本假定
        5.2.2 模型尺寸
        5.2.3 网格划分
        5.2.4 模型计算参数选取
        5.2.5 边界条件确定
    5.3 土钉支护过程的模拟分析
        5.3.1 基坑开挖施工模拟
        5.3.2 初始应力分析
    5.4 模拟结果分析
        5.4.1 水平位移
        5.4.2 坑底隆起与周围地表沉降
        5.4.3 应力状态分析
        5.4.4 土钉轴力分析
    5.5 支护结构方案优化
        5.5.1 基坑支护优化阶段
        5.5.2 基坑支护优化内容
        5.5.3 土钉长度优化
        5.5.4 土钉角度优化
    5.6 本章小结
第六章 设计计算结果与监测结果对比分析
    6.1 深基坑变形监测方案
        6.1.1 基坑监测的目的、原则
        6.1.2 监测的内容
        6.1.3 监测的方法
        6.1.4 基坑监测频率及预警值
    6.2 深基坑有限元结果与监测数据对比分析
        6.2.1 水平位移分析
        6.2.2 地表沉降分析
        6.2.3 附近道路沉降分析
        6.2.4 土钉轴力对比
    6.3 本章小结
第七章 结论与展望
    7.1 主要结论
    7.2 展望
参考文献
致谢
作者简介及读研期间主要科研成果

(4)某深基坑支护结构设计及参数化分析(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 研究背景与意义
    1.2 深基坑工程的特点、设计内容与设计原则
        1.2.1 深基坑工程的特点
        1.2.2 深基坑工程的设计内容
        1.2.3 深基坑工程的设计原则
    1.3 国内外研究现状
        1.3.1 国内研究现状
        1.3.2 国外研究现状
    1.4 深基坑工程的发展趋势
    1.5 本文研究的主要内容及技术路线
2 深基坑支护结构类型及适用条件
    2.1 几种支护结构类型
        2.1.1 土钉墙支护结构
        2.1.2 桩锚支护结构
        2.1.3 连续墙支护结构
        2.1.4 重力式水泥土墙支护结构
        2.1.5 内支撑支护结构
    2.2 几种支护结构适用条件
    2.3 本章小结
3 利用理正软件对两种基坑支护方案进行设计
    3.1 工程概况
        3.1.1 场地工程地质条件
        3.1.2 场地地震效应
    3.2 基坑支护方案的初选
    3.3 基坑支护设计
        3.3.1 土钉墙支护结构方案设计
        3.3.2 桩锚支护结构设计
    3.4 土钉墙支护和桩锚支护对比
        3.4.1 施工工艺方面
        3.4.2 对周围环境影响方面
4 利用PLAXIS对两种深基坑支护结构性能的研究
    4.1 PLAXIS软件简介
    4.2 模型建立
    4.3 两种支护方式下参数变化对其结构性能的影响
        4.3.1 桩锚支护方式下参数变化对性能的影响
        4.3.2 土钉墙支护方式下参数变化对性能的影响
    4.4 施工监测数据对比
        4.4.1 地表沉降
        4.4.2 支护桩体水平位移
        4.4.3 支护桩体竖向位移
5 结论与展望
    5.1 结论
    5.2 展望
致谢
参考文献

(5)软弱土层深基坑支护中加强型土钉墙的应用(论文提纲范文)

0 引言
1 土钉墙的类型与结构形式分析
    1.1 钢管注浆型土钉墙
    1.2 加强型土钉墙
    1.3 止水型土钉墙
2 加强型土钉墙的概述
    2.1 作用机理
    2.2 适用范围
3 土钉墙施工及质量控制
    3.1 基坑开挖
    3.2 土钉和锚杆的施工
    3.3 喷射混凝土面层
4 案例分析
    4.1 项目概况
    4.2 支护设计
    4.3 施工管理措施
5 结束语

(6)高层住宅深基坑支护施工安全风险评估(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 研究的背景及意义
        1.1.1 研究的背景
        1.1.2 研究的意义
    1.2 国内外研究现状
        1.2.1 国外研究现状
        1.2.2 国内研究现状
    1.3 该领域目前存在的问题
    1.4 研究内容与技术路线
        1.4.1 主要研究内容
        1.4.2 技术路线图
2 风险分析方法与基本理论
    2.1 风险概述
        2.1.1 风险的概念
        2.1.2 深基坑施工阶段风险的特点及风险事故分析
    2.2 风险分析的方法与遵循的原则
        2.2.1 风险识别的方法
        2.2.2 风险评估的方法
        2.2.3 遵循的原则
    2.3 论文采用的风险分析方法
        2.3.1 风险识别的方法
        2.3.2 风险评估方法
    2.4 本章小结
3 深基坑支护工程施工风险识别
    3.1 风险识别过程及风险因素清单
        3.1.1 风险识别过程
        3.1.2 风险因素分解及清单
    3.2 深基坑支护工程施工风险指标的建立
        3.2.1 深基坑工程勘察原因潜在的施工风险指标的建立
        3.2.2 深基坑设计原因潜在的施工风险指标的建立
        3.2.3 深基坑施工阶段风险指标的建立
    3.3 深基坑支护过程风险识别
        3.3.1 深基坑勘察原因潜在的施工风险因素识别
        3.3.2 深基坑设计原因潜在的施工风险因素识别
        3.3.3 深基坑施工阶段风险因素识别
    3.4 本章小结
4 深基坑施工支护风险评估
    4.1 施工阶段风险因素评估指标
    4.2 施工阶段采用的风险评价方法
    4.3 本章小结
5 工程实例
    5.1 工程概况
        5.1.1 项目概况
        5.1.2 地层概况
        5.1.3 基坑支护方案简要说明
    5.2 深基坑工程施工阶段专项风险评估
        5.2.1 深基坑勘察原因潜在的施工风险评估
        5.2.2 深基坑设计原因潜在的施工风险评估
        5.2.3 深基坑施工阶段风险评估
    5.3 深基坑支护施工期支护总体风险评估
    5.4 深基坑支护工程施工风险应对措施
        5.4.1 勘查原因潜在的施工风险应对措施
        5.4.2 设计原因潜在的施工风险应对措施
        5.4.3 施工阶段风险应对方案
    5.5 本章小结
6 结论与展望
    6.1 主要结论
    6.2 展望
参考文献
攻读学位期间的研究成果
致谢

(7)延吉地区深基坑支护技术的研究与应用(论文提纲范文)

摘要
abstract
1 绪论
    1.1 研究目的及意义
    1.2 基坑工程的发展途径
        1.2.1 国内研究现状
        1.2.2 国外研究现状
    1.3 深基坑工程的新技术
    1.4 深基坑工程中的主要问题与不足
        1.4.1 设计问题
        1.4.2 施工问题
        1.4.3 结语
    1.5 本文的研究内容和技术路线
2 常用基坑支护形式
    2.1 悬臂桩支护结构
        2.1.1 悬臂式支护形式概述
        2.1.2 作用机理及受力分析
    2.2 土钉支护结构
        2.2.1 土钉支护形式概述
        2.2.2 土钉支护的受力分析及其工作机理
    2.3 复合土钉墙支护
    2.4 桩锚支护结构
        2.4.1 桩锚支护形式概述
        2.4.2 作用机理与受力分析
    2.5 各种支护结构之间的适用性比较
    2.6 本章小结
3 深基坑支护形式在延吉地区工程中的应用
    3.1 工程概况
    3.2 设计参数
    3.3 施工方案
    3.4 桩间及岩石坡面喷射砼
    3.5 基坑降水施工
    3.6 本章小结
4 深基坑变形规律研究
    4.1 基坑变形监测意义
    4.2 监测工作目的和内容
    4.3 基准点、观测点的设置
    4.4 基坑护壁桩的位移观测
    4.5 报警值
    4.6 质量保证措施
    4.7 质量控制
    4.8 本文实例
    4.9 本章小结
5 结论与展望
    5.1 结论
    5.2 展望
参考文献
作者简介
作者在攻读硕士学位期间获得的学术成果
致谢

(8)砂卵石地层深基坑支护参数设计 ——以云南省勐腊县南腊河调蓄池基坑支护为例(论文提纲范文)

摘要
abstract
第一章 绪论
    1.1 选题背景及研究意义
    1.2 国内外研究现状
        1.2.1 基坑支护形式理论研究现状
        1.2.2 砂卵石分布规律的研究现状
        1.2.3 砂卵石地层深基坑支护研究现状
        1.2.4 砂卵石地层深基坑稳定性研究现状
    1.3 目前存在问题
        1.3.1 研究手段与主要内容
    1.4 研究内容及技术路线
        1.4.1 研究内容
        1.4.2 技术路线
第二章 砂卵石地层深基坑变形机理及影响因素分析
    2.1 砂卵石地层特征
        2.1.1 地质构造
        2.1.2 工程特性
    2.2 深基坑开挖主要变形及机理分析
        2.2.1 支护支挡结构变形机理分析
        2.2.2 基坑开挖周边地表沉降机理分析
    2.3 基坑变形影响因素分析
        2.3.1 设计因素
        2.3.2 工程地质条件
        2.3.3 施工因素
    2.4 深基坑变形控制措施
    2.5 本章小结
第三章 砂卵石地层深基坑支护结构设计理论研究
    3.1 砂卵石地层常用支护结构类型及其适用性分析
        3.1.1 土钉墙支护结构
        3.1.2 排桩支护
        3.1.3 地下连续墙支护
        3.1.4 排桩+内支撑支护
    3.2 深基坑支护结构的选择原则及依据
    3.3 基坑支护计算方法及方案优选理论概述
        3.3.1 土压力理论
        3.3.2 基坑支护结构的计算理论
        3.3.3 支护结构初优选考虑的因素
        3.3.4 基坑支护方案优选方法
    3.4 本章小结
第四章 依托工程对深基坑支护形式的分析及初选
    4.1 工程概况
        4.1.1 工程基本概况
        4.1.2 气象与水文条件
        4.1.3 地形地貌
        4.1.4 区域地层及地质构造
        4.1.5 场地工程地质条件
    4.2 深基坑支护方案对比分析
        4.2.1 地下连续墙支护
        4.2.2 桩锚支护
        4.2.3 深基坑支护对比分析
    4.3 桩锚支护介绍
        4.3.1 支护特点
        4.3.2 使用范围
        4.3.3 支护工艺原理及方法
    4.4 本章小结
第五章 深基坑支护结构变形及内力数值分析
    5.1 ABAQUS软件介绍及采用本构模型
        5.1.1 有限元分析原理
        5.1.2 ABAQUS软件介绍
        5.1.3 ABAQUS提供的本构模型
    5.2 参数选取及计算模型的建立
        5.2.1 计算基本假定
        5.2.2 数值模型参数选取
        5.2.3 模型的建立及边界条件
    5.3 计算结果及分析
        5.3.1 不同支护桩刚度影响分析
        5.3.2 不同支护桩嵌入深度影响分析
        5.3.3 不同开挖深度结构分析
        5.3.4 不同锚杆直径结构分析
        5.3.5 不同锚杆类型结构分析
    5.4 本章小结
第六章 结论与展望
    6.1 结论
    6.2 展望
致谢
参考文献
攻读学位期间取得的研究成果

(9)微型桩-土钉复合支护结构的力学特性及工程应用研究(论文提纲范文)

摘要
ABSTRACT
1 绪论
    1.1 引言
    1.2 微型桩复合土钉墙支护结构作用机理及研究现状
        1.2.1 微型桩作用机理
        1.2.2 土钉作用机理
        1.2.3 面层作用机理
        1.2.4 微型桩复合土钉支护结构研究现状
    1.3 选题依据
    1.4 研究内容与技术路线
        1.4.1 研究内容
        1.4.2 技术路线
2 长沙某基坑支护工程方案设计
    2.1 工程地质条件
        2.1.1 地形地貌
        2.1.2 地层岩性
        2.1.3 水文地质条件
    2.2 微型桩复合土钉墙支护方案设计
        2.2.1 设计依据及参数
        2.2.2 基坑支护方案选型
    2.3 微型桩复合土钉支护结构计算
        2.3.1 理正深基坑支护结构设计软件简介
        2.3.2 理正深基坑支护结构设计软件计算原理
        2.3.3 基坑支护方案计算与设计
3 微型桩复合土钉支护结构变形规律与力学特性研究
    3.1 MIDAS GTS软件基本原理
    3.2 三维有限元模型的建立
    3.3 基坑开挖变形分析
        3.3.1 冠梁变形分析
        3.3.2 微型桩变形分析
        3.3.3 土钉变形分析
        3.3.4 基坑土体变形分析
    3.4 基坑开挖受力分析
        3.4.1 冠梁应力分析
        3.4.2 微型桩应力分析
        3.4.3 土钉受力分析
        3.4.4 坡面变形分析
    3.5 本章小结
4 坑边施工荷载对微型桩复合土钉支护结构变形规律与力学特性研究
    4.1 坑边施工施工荷载影响分析
    4.2 冠梁变形与受力分析
    4.3 微型粧变形与受力分析
    4.4 土钉变形与受力分析
    4.5 基坑土体变形分析
    4.6 本章小结
5 长沙某健康产业园基坑支护工程应用研究
    5.1 支护结构施工方案
        5.1.1 微型桩施工
        5.1.2 土钉施工
        5.1.3 土钉施工
        5.1.4 面层施工
    5.2 施工监测实施方案
    5.3 施工检测实施方案
6 结论与展望
    6.1 结论
    6.2 展望
参考文献
致谢

(10)止水支护联合结构在软土地层基坑支护中的应用研究(论文提纲范文)

摘要
Abstract
1 引言
    1.1 选题的目的及意义
    1.2 国内外研究现状
        1.2.1 国内基坑支护研究现状
        1.2.2 国外基坑支护研究现状
    1.3 主要研究内容、方案、技术路线及创新点
        1.3.1 主要研究内容
        1.3.2 主要研究方案
        1.3.3 技术路线
        1.3.4 创新点
2 软土基坑常用支护方法
    2.1 基坑支护计算方法
        2.1.1 朗肯土压力
        2.1.2 库仑土压力
        2.1.3 基坑规范中土压力的计算理论
    2.2 软土在地基和基础工程中的定义区别
        2.2.1 软土的定义
        2.2.2 软土的区别
    2.3 基坑支护中常用的支护方法
    2.4 软土中常用的支护方法
    2.5 本章小结
3 止水支护联合结构适用性分析
    3.1 止水支护联合结构的定义
        3.1.1 止水帷幕定义及常用方法
        3.1.2 支护结构
    3.2 止水支护联合结构的优缺点
    3.3 止水支护联合结构的适用范围
    3.4 本章小结
4 止水支护联合结构支护理论及方法
    4.1 止水支护联合结构的规范依据
    4.2 分项计算理论
        4.2.1 整体稳定计算理论
        4.2.2 重力式挡墙(SMW工法)
        4.2.3 土钉墙
    4.3 止水支护联合结构的计算理论
    4.4 本章小结
5 止水支护联合结构工程应用
    5.1 重力式水泥土墙与土钉墙联合支护技术应用
        5.1.1 基坑概述
        5.1.2 支护参数计算
        5.1.3 施工过程
        5.1.4 基坑监测
    5.2 三轴搅拌桩与土钉墙联合支护技术应用
        5.2.1 基坑概述
        5.2.2 水泥土桩适用性探讨
        5.2.3 漏水事故原因分析及处理措施
    5.3 排桩、放坡与土钉墙联合支护技术应用
        5.3.1 基坑概述
        5.3.2 支护参数计算
    5.4 本章小结
6 结论与展望
    6.1 结论
    6.2 展望
参考文献
附录
在学研究成果
致谢

四、复合土钉墙在深基坑支护中的应用(论文参考文献)

  • [1]复杂环境下综合管廊深基坑支护优选及监测[D]. 邹正. 四川师范大学, 2021(12)
  • [2]某深基坑桩锚支护与土钉墙支护结构的受力变形分析[D]. 陈艳平. 河北大学, 2021(09)
  • [3]西宁某深基坑土钉墙支护数值模拟与现场监测[D]. 张传虎. 安徽建筑大学, 2021(08)
  • [4]某深基坑支护结构设计及参数化分析[D]. 潘建邦. 兰州交通大学, 2021(02)
  • [5]软弱土层深基坑支护中加强型土钉墙的应用[J]. 赵永志. 低碳世界, 2021(02)
  • [6]高层住宅深基坑支护施工安全风险评估[D]. 冯晶. 兰州交通大学, 2020(02)
  • [7]延吉地区深基坑支护技术的研究与应用[D]. 张欢. 沈阳建筑大学, 2020(04)
  • [8]砂卵石地层深基坑支护参数设计 ——以云南省勐腊县南腊河调蓄池基坑支护为例[D]. 赵永. 重庆交通大学, 2020(01)
  • [9]微型桩-土钉复合支护结构的力学特性及工程应用研究[D]. 唐苏武. 中南林业科技大学, 2020(01)
  • [10]止水支护联合结构在软土地层基坑支护中的应用研究[D]. 陈浩. 内蒙古科技大学, 2019(03)

标签:;  ;  ;  ;  ;  

复合土钉墙在深基坑支护中的应用
下载Doc文档

猜你喜欢