云南武定雅拉场铜矿床含矿英脉~(40)Ar-~(39)Ar年龄及其意义

云南武定雅拉场铜矿床含矿英脉~(40)Ar-~(39)Ar年龄及其意义

一、云南武定迤腊厂铜矿含矿石英脉~(40)Ar-~(39)Ar年龄及其意义(论文文献综述)

卢映祥,施玉北,孙涛,曾妍,李蓉,曹晓民,程胜辉[1](2021)在《云南关键矿产重要矿床成矿系列》文中研究表明云南地处特提斯成矿域与滨太平洋成矿域交汇部位,地质构造复杂,岩浆活动频繁,成矿条件优越。本文将铅、锌、铜、锡、钨、金、银、磷、钛、稀土金属(16种)、稀有金属(9种)和分散元素(8种)列为云南优势关键矿产,总结其资源特征,并针对这些矿产开展矿床成矿系列研究。研究结果显示,全省共可划分出88个矿床成矿系列或亚系列,其中与以上优势关键矿产有关的矿床成矿系列或亚系列有48个,共118个矿床式;以成矿省为单元,华南(陆块)成矿省(云南部分)有8个矿床成矿系列或亚系列,16个矿床式;上扬子(陆块)成矿省(云南部分)有16个矿床成矿系列或亚系列,35个矿床式;三江(造山带)成矿省(云南部分)有19个矿床成矿系列或亚系列,57个矿床式;腾冲(造山带)成矿省有5个矿床成矿系列或亚系列,10个矿床式。按成矿时代,新生代矿床成矿系列或亚系列有16个、中生代12个、古生代12个、前寒武纪5个和跨中生代和新生代3个,成矿强度依次为新生代→中生代→古生代→前寒武纪。

殷学清,林海涛,苏治坤,赵新福[2](2021)在《东川式铜矿的成矿作用及后期叠加改造:来自硫化物原位硫同位素的制约》文中研究说明沉积岩型层状铜矿床(SSC型)的成因争论聚焦在成矿作用主要集中在沉积成岩期并可能叠加有后期成矿作用,还是形成于成岩后盆地闭合过程和造山作用有关。产于扬子板块西缘的东川式铜矿是中国SSC型矿床的典型代表,这些矿床赋存在晚古元古界东川群岩石中,主要呈层状矿体产出,但也存在少量脉状矿体。文章选择东川铜矿田内因民、汤丹和滥泥坪3个典型矿床的层状和脉状矿体中硫化物(黄铁矿、黄铜矿、斑铜矿和辉铜矿)开展原位硫同位素组成的对比研究。实验结果表明,这些矿床的硫化物原位硫同位素组成分布范围较广:因民矿床层状硫化物的δ34S值分布于4.7‰~22.1‰,汤丹和滥泥坪矿床层状硫化物的δ34S值为-3.3‰~3.1‰;因民矿床脉状硫化物的δ34S值分布于21.0‰~30.7‰,汤丹和滥泥坪矿床脉状硫化物的δ34S值为-19.4‰~3.5‰。层状矿体和脉状矿体的硫化物硫同位素组成明显不同,表明形成2种产状矿体的硫来源不同。层状矿体较大的硫同位素组成差异指示了海相硫酸盐不同程度的热化学还原作用,表明初始成矿流体中的硫来源于循环盆地卤水中溶解的海相蒸发岩。脉状矿体的硫同位素组成则强烈受控于矿区的赋矿围岩,因民矿床硫化物中极高的硫同位素组成表明硫的来源为地层中的海相蒸发岩,而汤丹和滥泥坪矿床中亏损34S的特征则表明硫的来源为富含生物还原硫的碳质板岩。结合野外地质关系和前人研究成果,文章认为层状矿体和脉状矿体是2期独立成矿事件的产物,层状矿体形成于成岩作用时期,脉状矿体形成于后期独立的局部构造热成矿事件,也即SSC型矿床的成矿作用主要发生在成岩期,但普遍遭受后期热液活动的叠加,并且在不同的成矿期中可能存在着多阶段的成矿作用。

李志伟,桑传才,王雪超[3](2020)在《滇中昆阳群主要成矿类型与找矿预测》文中研究表明本文着重总结了滇中中元古界昆阳群中迤纳厂式(铜)铁矿、东川式铜矿、拖布卡金矿主要成矿类型的地质特征和成矿时代,其中因民期火山活动对前两类(铁)铜矿、铜矿的贡献应加以肯定。按照变异相成矿理论提出的"变异相、亲缘相、衍生相"观点和方法,研究其找矿预测方向。

丁金金[4](2020)在《易门狮子山铜矿床构造控矿规律及成矿年代学研究》文中进行了进一步梳理狮子山铜矿床位于昆阳裂谷滇中地区易门裂陷盆地中,是易门矿田典型铜矿床之一。基于对该矿床成矿地质特征研究,应用大比列尺构造-岩相填图方法,开展狮子山铜矿床构造控矿规律研究,分析控矿构造特征,建立矿区深部构造控矿模式;通过辉绿岩锆石U-Pb年代学和脉状矿石黄铜矿-斑铜矿Re-Os同位素定年,厘定矿区辉绿岩侵入时代和矿床成矿时代;综合以上研究,建立找矿预测模型,进行深部找矿预测。论文主要取得如下成果和认识:(1)该矿床受构造控制明显,通过对矿区控矿构造特征分析,矿体的形成主要受NE向断裂控制,晚期受NW向断裂破坏。在狮子山背斜NW翼发育有刺穿构造,刺穿构造和层间断裂(Fl4)交汇部位控制了1号主矿体和8号矿体的展布。在18-20中段,矿体被NWW向的Fy2断裂错断。(2)矿区发育有侵入的辉绿岩,通过对十八中段钻孔(ZK1835-1)127.25米处揭露的辉绿岩进行锆石U-Pb同位素研究,发现锆石年龄主要分为两个阶段,分别为35.3~114.7Ma和1770.6~2373.5Ma,其中35.3~114.7Ma是辉绿岩的侵入年龄,1770.6~2373.5Ma为辉绿岩侵入时携带地层碎屑岩中的锆石年龄,表明该辉绿岩的侵入时代在35.3~114.7Ma之间,碎屑锆石的物源区年龄在1770.6~2373.5Ma之间,同时表明该碎屑沉积岩最大沉积时限在~1770Ma。(3)应用Re-Os同位素测试技术对矿区落雪组热液脉状黄铜矿-斑铜矿进行同位素定年,确定落雪组热液脉中黄铜矿-斑铜矿的成矿时代至少有三期,分别为~1755?220Ma、~1538?130Ma和449.4?4.7Ma,其中1538?130Ma是矿区主要成矿期,另外两期成矿事件分别在1755?220Ma、449.4?4.7Ma,为矿区小规模成矿事件。(4)综合以上研究,建立找矿预测模型,成功预测了深部隐伏1号、8号矿体分布范围,通过工程验证,升级和新增332+333铜金属资源量4.2万吨。

苏治坤[5](2019)在《康滇地区大红山IOCG矿床成矿作用 ——矿物微区地球化学及年代学的成因启示》文中提出扬子西缘康滇地区是全球范围内一个重要的元古宙铁铜多金属成矿带。根据早期的勘探资料可推算出至少有10亿吨铁和6百万吨铜金属。该区自上世纪60年代几个典型铁铜矿床被发现以来,就引起大量学者和地质单位的关注。虽然迄今经过半个世纪的开采和研究,但目前对这些铁铜矿床的描述性地质模型(包括原岩组成,热液蚀变规律,控矿要素等)、成矿时代及大地构造背景、成矿及改造过程等关键科学问题仍然存在不少问题,从而制约了对矿床成因和区域成矿规律的总结。本论文选取区域最典型的、规模最大的大红山铁-铜-(金)矿床作为研究对象,通过总结分析前人资料和详细的野外地质观察,系统总结了该矿床热液蚀变特征和蚀变相组成。在精细的矿物学研究基础上,借助多种同位素年代学(Sm-Nd;Re-Os;U-Pb)测试方法,结合矿物原位同位素(S-B-Nd)分析,尝试厘清大红山铁铜矿床形成时代及改造历史,查明成矿物质来源、成矿(或改造)流体性质,深入探讨并总结了该矿床的成因模式,力求为康滇地区及我国同类型矿床的矿床成因和成矿规律研究提供有益借鉴。论文取得的主要认识和成果如下:大红山铁铜矿床的赋矿围岩大红山群是一套下元古界变火山-沉积地层,时代为1711-1665 Ma。通过原岩特征恢复,沉积地层沉积相自下而上由河流-三角洲相过渡到滨浅海潮坪碳酸盐相,主要岩性包括含砾砂岩–砂岩–粉砂岩–泥质粉砂岩或泥质岩–互层状含碳泥质粉砂岩和白云岩(IASD)–砂质白云岩–白云岩序列。沉积地层中夹杂有少量的火山岩,火山岩具有双峰式特征,出露以基性火山岩为主,有少量酸性岩已完全蚀变成石英钠长岩。这套地层在成矿过程在发生了强烈的热液蚀变作用,导致岩石矿物组成和面貌有很大差异,结合详细的野外观察、光学显微镜、显微镜冷阴极发光、以及X-射线元素扫面等技术论文系统恢复了赋矿地层的原岩特征,证实前人拟定的“红山组”800米厚的“细碧角斑岩系”为强烈蚀变并部分角砾岩化的沉积地层,仅含少量火山岩。条带状铁铜矿的关键层位石榴石云母片岩的原岩岩性主要为互层状含碳泥质粉砂岩和白云岩(IASD)。大红山矿床的主要矿体根据产状和矿石矿物组合差异可分为两类:产于石榴石云母片岩中的条带状-浸染状铁铜矿体和产于“红山组”地层中的块状铁矿体。铁铜矿石中的主要矿物组合为磁铁矿+黑云母+黄铁矿+黄铜矿+菱铁矿+绿泥石组合;铁矿石的主要矿物组合为钠长石+磁铁矿+赤铁矿+石英组合。详细的野外填图和岩相学研究表明大红山矿床中不同岩性中发育类似的热液蚀变相演化。热液蚀变从高温到低温的演化趋势为:Na–(Na)-Ca-Fe–HT K-Fe–LT K-Fe–LT Ca-Mg。与磁铁矿成矿有关的主要蚀变相为HT Ca-Fe和HT K-Fe两类蚀变;而与铜硫化物沉淀有关的蚀变主要为LT K-Fe蚀变。系统采集矿床中硫化物和电气石示踪物质来源及流体演化。根据产状硫化物可大致分为三个世代:PyI为HT Ca-Fe阶段包裹于磁铁矿内部的少量的黄铁矿包体;PyII+CcpII为LT K-Fe阶段大规模沉淀的硫化物,根据围岩进一步划分为II-1(砂岩或砂质白云岩)和II-2(IASD);Py III+CcpIII则产于后期活化切穿片理的粗脉状石英-方解石脉中。PyI具有低δ34S值范围(-2.2‰到5.3‰)、低Se/S比值和低Co/Ni比值,表明该阶段成矿流体以岩浆流体为主。流体系统的Se/S比值随后升高,同时伴随有PyII+CcpII大规模沉淀。岩浆流体在砂岩以及砂质白云岩中占主导地位;而在主要赋矿围岩的IASD中,双峰式分布的硫化物δ34S值(1.0‰到5.1‰和13.5‰到15.8‰)暗示了盆地卤水和岩浆流体的混合可能对大红山硫化物大规模的沉淀起到了重要作用。大红山硫化物中特征的高Co-Ni含量和Co/Ni比值暗示了成矿流体具有基性岩浆岩的亲缘性。晚期活化脉中的黄铁矿的化学成分和S同位素组成总体与原生矿化类似,表明活化流体S及物质来源具有原生矿石继承性。电气石形成于大红山铁铜矿床中从早期钠化到最晚期LT Ca-Mg蚀变的5个主要蚀变和成矿阶段。电气石主要成分为铁电气石-镁电气石序列,属于碱族电气石。电气石的成分受流体和围岩的综合影响,受水/岩比控制。钠化阶段的电气石δ11B值为-14.7‰到-7‰,与随后的HT Ca-Fe阶段的δ11B值范围一致(-12.3‰到-5.7‰)。高温K-Fe阶段(-10.7‰到-0.5‰)和LT K-Fe阶段(-10.7‰到-2.2‰)的电气石具有显着升高的δ11B值范围。最晚期的的电气石-石英-方解石脉则给出了最高的+2.9‰到+5.9‰的范围。大红山中电气石硼同位素的显着分馏不可能仅仅依靠瑞利分馏形成,而是指示了岩浆流体和盆地卤水不同流体间的混合作用。对应阶段的O-S同位素也支持流体混合的存在。在钠化和磁铁矿形成阶段成矿流体以岩浆流体为主,而在随后的高温K-Fe阶段和硫化物大规模沉淀时有大量的盆地流体加入。电气石的系统硼同位素研究表明大红山铁铜矿床中的成矿流体最开始起源于岩浆源区,但非岩浆流体的加入可能对触发具有经济价值的硫化物矿化具有重要意义。对大红山矿床产出的各类副矿物进行了系统的年代学测试,建立了大红山矿床的年代学框架。与铜成矿紧密共生的热液锆石给出U-Pb年龄为1653±18 Ma,这一年龄与利用稀土矿物获得的Sm-Nd误差等时线年龄1654±55 Ma的年龄一致,也与通过脉岩穿插关系所限定的年龄一致,这些年龄一致表明大红山矿床的主成矿期在1.65 Ga。然而,多种同位素定年手段,包括硫化物Re-Os,副矿物U-Pb,以及全岩和稀土矿物Sm-Nd同位素分析则发现大红山矿床形成后经历至少了5期流体的改造作用,分别为(1)1441±58 Ma与区域岩浆流体活动,(2)1026±15Ma与区域岩浆流体活动,(3)910±23 Ma940±12Ma的大红山局部构造-岩浆(?)事件,(4)872±12 Ma876±2 Ma的区域岩浆流体活动,和(5)799±13Ma830±5 Ma与区域大规模岩浆-变质作用有关的流体活动。与主期成矿事件同时代的双峰式岩浆岩的地球化学特征,以及赋矿裂谷盆地火山-沉积地层的演化过程,表明矿床形成与哥伦比亚超大陆裂解有关,大地构造背景为克拉通边缘的大陆裂谷沉积盆地,而成矿后的改造事件可与区域多期次的岩浆-构造-热事件相对应。为了进一步查明成矿期成矿物质来源和成矿后多期热液叠加事件有无新物质加入的可能,本文系统分析矿石全岩和主要稀土矿物(磷灰石、独居石及褐帘石)的Sm-Nd同位素组成。结合相对应的U-Pb年代学体系,从REE的角度,鉴别出仅在1.45 Ga有少量新生成矿物质的加入,而大量的晚中-早新元古代稀土矿物均为1.65 Ga的矿石再活化,并没有新的成矿物质加入。因此从REE的角度,这些稀土矿物如独居石、褐帘石等的年龄(1.04–0.80 Ga)并不能代表独立成矿事件,而是记录了流体叠加/改造活动,指示了稀土元素在矿床内部的重新分布的过程,表明前寒武纪矿床中的稀土元素及其他成矿元素在后期地质事件中可能发生活化和改造作用。

温利刚,曾普胜,詹秀春,范晨子,王广,孙冬阳,袁继海,费晓杰[6](2019)在《云南禄丰鹅头厂铁铜矿床中稀土矿物的发现及意义》文中研究指明云南禄丰鹅头厂铁铜矿床是滇中地区着名的元古宙含铜富铁矿床之一,矿床中除了铁、铜等资源外,还伴生少量的稀土组分。本文利用国际上矿物与地质行业前沿的矿物自动分析测试方法——矿物表征自动定量分析系统(AMICS),结合扫描电镜-能谱(SEM-EDS)显微结构原位分析技术,完成了常规岩矿鉴定手段难以完成的矿物定量识别和鉴定,首次在禄丰鹅头厂铁铜矿床中发现了氟碳钙铈矿、氟碳铈矿、褐钇铌矿等独立的稀土矿物。其中,氟碳钙铈矿主要富集在条纹条带状矿石中,分布极不均匀,局部富集,主要呈微细粒半自形至它形粒状晶体,多为微细粒的不规则粒状集合体,与磁铁矿间隙中的方解石和绿泥石等脉石矿物紧密共生,在氟碳钙铈矿颗粒中普遍含有呈板状或柱状、片状、针状的微细粒氟碳铈矿;褐钇铌矿也主要富集在条纹条带状矿石中,呈细小的不规则粒状,与铁氧化物边缘缝隙中的绿泥石等脉石矿物紧密共生。X射线能谱分析表明,氟碳钙铈矿和氟碳铈矿富含轻稀土元素,以Ce、Nd、La为主,含量一般Ce> La> Nd,含少量Pr、Y等元素;褐钇铌矿中主要金属元素有Nb、Y、Ce、Nd、Fe、Ti、Mg、Ca、U等,其中Nb的含量较高,稀土元素以Y为主,并含少量Ce、Nd等。稀土矿物的发现,对探讨该矿床及整个滇中地区前寒武纪(中元古代)铁-铜(-稀土)矿床的成因有着一定的指示意义。根据矿床中稀土-铁氧化物的产出特征和区域成矿地质背景,结合前人研究成果,认为鹅头厂矿床中稀土-铁氧化物的形成与Columbia超大陆裂解时的深部(地幔)岩浆活动有关,并受到多期次后期热液事件的叠加改造。

朱利岗[7](2019)在《云南武定地区铁-铜-金-铀-稀土矿成矿作用与成矿动力学》文中研究表明云南武定铁铜多金属成矿带位于扬子地块西南缘,康滇地轴的中南段,区域内前寒武纪铁铜矿产丰富,其古-中元古代地层由变质火山岩和变质沉积岩组成,目前认为康滇地区为铁氧化物-铜-金型(IOCG)成矿带。本文以云南迤纳厂、邵家坡和鹅头厂矿床为例,获得主要成果如下:1、首次在迤纳厂矿床中观察到磷灰石CL图像有环带结构,分析结果表明核部较亮部分富含La、Ce、Nd等稀土元素,表现为两期稀土富集作用,在稀土成矿早期有较强烈的稀土富集,在稀土成矿晚期稀土富集作用逐渐减弱,这与磷灰石背散射图像中从核部到边缘稀土矿物颗粒由大变小至没有的规律相吻合。2、通过对不同类型矿石矿物学的分析得出迤纳厂矿床、邵家坡矿床、鹅头厂矿床具有相似的矿物组合,都含有一定量的稀土矿物和铀矿物,只是数量不同。在邵家坡铜矿床中首次观察到矿石中赋存稀土矿物和铀矿物,稀土矿物主要有氟碳铈钙矿、氟碳铈矿、独居石等,铀矿物呈包裹体状分布在黄铜矿中。在鹅头厂铁矿床中也赋存有独居石和氟碳铈矿等稀土矿物和铀矿物,铀矿物主要分布在黄铁矿和石英中。3、迤纳厂矿床硫化物原位硫同位素δ34SV-CDT值集中在+1‰+3‰表明硫来源于岩浆硫,而鹅头厂矿床和邵家坡矿床硫化物中的硫来源于海水硫酸盐;原位铅同位素表明铅来源于地幔或地幔岩浆上涌;氢氧同位素分析得出δ18OH2O值为2.7‰10.7‰及δDV-SMOW值为-98.2‰-47.7‰,表明成矿流体在成矿早期来自岩浆作用,在成矿晚期有变质水的加入;碳氧同位素分析得出δ13CV-PDB值为-2.4‰1.00‰及δ18OV-SMOW值为6.9‰18.4‰,在成矿早期少量来自深源地幔包体,随着成矿作用的进行主要来自海相碳酸盐的溶解;矿石中黑云母40Ar-39Ar同位素年龄为897±14Ma、886±72Ma,为区域上发生变质作用的时间,其与该区稀土矿物的富集成矿作用有联系。4、中基性岩浆岩侵入体及砂岩锆石U-Pb同位素研究表明,古-中元古代本区有岩浆岩活动,碎屑锆石中存在大量太古代-古元古代锆石,其中最老锆石年龄为2948±13Ma。中基性岩浆岩锆石的Hf-O同位素图解中得出其主要来自亏损地幔,研究区的矿化作用与亏损地幔源岩浆活动有关。

黄从俊[8](2019)在《扬子地块西南缘拉拉IOCG矿床地质地球化学研究》文中进行了进一步梳理拉拉铁氧化物-铜-金(IOCG)矿床位于扬子地块西南缘康滇地轴中段,矿体赋存于古元古界河口群落凼组变质火山-沉积岩系中,呈似层状、透镜状、脉状大致顺层产出;矿石类型以网脉—角砾状、脉状矿石为主,次为浸染状-块状、条带状-似层状矿石;已探明矿床中矿石储量约200Mt,平均品位:铁15.28%,铜0.83%,钼0.03%,钴0.02%,金0.16g/t,银1.87 g/t,稀土0.14%。本文通过野外地质调查和室内综合整理分析,运用镜下显微岩/矿相学观察、稀土元素地球化学、稳定同位素地球化学、放射性同位素地球化学及流体包裹体地球化学等手段对扬子地块西南缘拉拉IOCG矿床的地质地球化学特征进行了系统全面的研究,取得了如下成果与认识:(1)系统查明了该矿床的矿物组成及矿物生成顺序,重新划分了该矿床的成矿期次与成矿阶段,认为矿床先后经历了火山喷发-沉积成矿作用,变质成矿作用,气成-热液成矿作用和热液成矿作用,其中气成-热液成矿期和热液成矿期为矿床的主要成矿期;并新发现了该矿床的热液成矿期存在磷灰石、独居石及辉钼矿等重要矿物。(2)利用稀土元素(REE)地球化学研究,提出河口群地层是由海底热水沉积岩和长英质岩浆岩经变质作用而成;火山喷发-沉积成矿期成矿流体中的REE来源于裂谷环境中碱性-钙碱性岩浆的演化;变质成矿期成矿流体中的REE来自于围岩,继承了火山喷发-沉积成矿期流体中REE地球化学特征;气成-热液成矿期成矿流体中的REE来源于同期中酸性岩浆的演化;热液成矿期成矿流体中REE来源于基性岩浆分异演化形成的中高温热液和/或河口群围岩。(3)借助于H-O、C、S等稳定同位素,揭示了拉拉IOCG矿床的成矿流体性质和矿化剂(C、S)的来源,认为变质成矿期以变质水为主,气成-热液成矿期主要为岩浆水,热液成矿期以岩浆水为主,但有大气降水参与;矿化剂C和S主要来自幔源。(4)利用Pb、Sr、Nd和Os等放射成因同位素示踪了成矿物质来源,提出拉拉IOCG矿床的成矿物质较复杂,具有壳、幔混合源特征,且不同成矿期,成矿物质的来源存在差异,同一时期不同成矿金属(Cu和Mo)的来源也有所不同。(5)采用独居石U-Pb、黑云母Ar-Ar、硫化物Re-Os、硫化物Pb-Pb定年等多种测年手段,精确测定了拉拉IOCG矿床的4期成矿作用时限,(1)古元古代末期的火山喷发-沉积成矿作用,成矿时限1725Ma-1647Ma,持续100Ma,主要为Fe-Cu-(L)REE矿化,发生成矿预富集或形成含Fe和Cu的矿源层;(2)中元古代中期的变质热液成矿作用,成矿时限1235Ma-1218Ma,持续约20Ma,矿源层中成矿元素重新分布、改造富集,主要为Fe-Cu-REE矿化,形成条带状、片理化矿石;(3)中元古代末期的大规模气成-热液成矿作用,成矿时限1097Ma-907Ma,持续200Ma,主要为Fe-Cu-Mo-REE矿化,形成角砾状、网脉状、脉状、浸染状和块状富矿石;(4)新元古代早-中期的热液成矿作用,成矿时限860Ma-816Ma,持续45Ma,主要为Fe-Cu-Mo-U-REE矿化,发生碱交代成矿作用,形成碱交代岩体和脉状矿石。认为拉拉IOCG矿床具有多期、长期持续成矿作用特征。(6)借助于流体包裹体研究,提出气成-热液成矿期成矿流体为高温高盐度中酸性岩浆出溶流体与低温低盐度盆地卤水/变质水的混合,流体混合及相分离-流体超压作用是该期成矿作用矿质沉淀的主要机制;热液成矿期成矿流体为岩浆出溶流体与大气降水的混合,流体混合作用是导致该期矿质沉淀的主要机制。(7)发现拉拉IOCG矿床的4期成矿事件与康滇地区元古宙时期的构造-岩浆-热事件时限一致,其中火山喷发-沉积成矿期对应于古元古代康滇大陆裂谷作用,变质成矿期和气成-热液成矿期与中元古末期板块俯冲作用相关构造-岩浆活动时限一致,热液成矿期则与新元古代康滇大陆裂谷作用时限一致,提出拉拉IOCG矿床的成矿作用是扬子地块西南缘元古宙时期壳幔相互作用的响应,认为拉拉IOCG矿床是狭义的IOCG矿床。

陈伟,赵新福,李晓春,周美夫[9](2019)在《中国铁氧化物-铜-金(IOCG)矿床的基本特征及研究进展》文中研究表明铁氧化物-铜-金(Iron Oxide-Copper-Gold,IOCG)矿床是Hitzman et al.(1992)提出的一个新矿床类型。该概念的提出与澳大利亚Olympic Dam超大型矿床的发现有关,一定程度上促进了世界上同类新矿床的发现,引起工业界和学术界的广泛关注。中国IOCG矿床的研究起步较晚,在IOCG概念提出后很长一段时间内,并没有国内外公认的IOCG矿床报道。近年来,通过对一些Fe-Cu矿床的实例研究,目前已初步确立中国西南康滇地区、东准噶尔北缘和东天山阿齐山-雅满苏等Fe-Cu成矿带具有类似于IOCG的成矿特征,并且在矿床形成时代、机制及构造背景等成因问题上取得诸多进展。成矿时代上,康滇Fe-Cu成矿省形成于元古代,包括有~1. 65和~1. 0Ga两期主成矿事件,分别对应于区域上的两期板内岩浆作用,说明Fe-Cu矿化与大陆裂谷背景相关。东准噶尔北缘和东天山阿齐山-雅满苏成矿带均形成于古生代,分别为295~320Ma和~380Ma,被认为可能与陆缘盆地闭合有关。三个成矿带中Fe-Cu矿床围岩均为火山-沉积地层、均具有早期Fe矿化和晚期Cu矿化为主的特征且大部分矿床与同期侵入岩体没有明显空间关系,但在蚀变矿物组合及金属元素富集程度、流体特征等方面仍存在一些差别。例如康滇成矿省的蚀变组合以成矿前区域Na化、Fe矿化期Fe-Na-(Ca)化及铜矿化期K化和碳酸盐化等为特点;矿体在空间上常与大小不等的热液角砾岩筒共生;各矿床不同程度地富集REE、Mo、Au、Co等金属;成矿流体上早期以高温、中高盐度的岩浆热液为主,而成矿晚期则有更多非岩浆流体(盆地水、地层水或大气降水等)的加入。这些特点与世界上典型的IOCG矿床(特别是前寒武纪矿床)基本一致,因此目前为止,康滇成矿省作为中国的典型IOCG矿床而受国内外认可的程度相对较高。东准噶尔北缘与东天山阿齐山-雅满苏成矿带矿化特征较为相似,最新研究显示这些矿床中非岩浆流体(如盆地卤水、地层水等)对Fe-Cu矿化的贡献更大、成矿发生于陆缘盆地闭合期等,可能与南美中安第斯成矿带IOCG矿床更为类似。但是,部分矿床在成矿前均显示有明显的矽卡岩化,甚至个别矿床中矿体、岩体和矽卡岩具紧密时空关系而类似于矽卡岩矿床;多数矿床除Fe和Cu外,所含金属元素比较单一。这些特点一定程度上导致这两个矿带Fe-Cu矿床归属于矽卡岩还是IOCG矿床的问题上仍存在不少争议,尚待进一步的探索和讨论。基于目前的研究现状,本文也对中国IOCG矿床今后研究中值得关注的问题提出了一些设想和展望,包括不少矿床Fe-Cu矿化空间上分离的原因、不同地球化学行为差异较大的成矿元素(如Co、Ni与REE、U、Mo等)在矿床中均有富集的原因等方面。

温利刚,曾普胜,詹秀春,范晨子,孙冬阳,王广,袁继海,费晓杰[10](2018)在《迤纳厂矿床:一个“白云鄂博式”铁-铜-稀土矿床》文中进行了进一步梳理云南武定迤纳厂铁-铜-稀土矿床是滇中地区具有代表性的元古宙铁-铜-稀土矿床之一。矿床中除了铁、铜资源外,还伴生有稀土、稀有(铌)、钇、钼、钴等组分。研究表明:稀土元素含量在条纹条带状矿石和脉状矿石中均较高,ΣREE含量分别高达(1 446.83~11 259.23)×10-6和(2 020.92~3 415.51)×10-6,尤其富集La、Ce等轻稀土元素;稀有(铌)元素主要富集在条纹条带状矿石中,含量高达(278.8~529.0)×10-6。由于矿床的矿物组成非常复杂,并且矿石中稀土、稀有(铌)矿物含量相对较少,矿物结晶粒度细小,用传统的测试技术和方法很难识别鉴定,因此矿床的矿物学特征,尤其是稀土、稀有(铌)矿物的赋存状态特征研究一直以来都较为棘手。论文应用矿物表征自动定量分析系统(AMICS),结合扫描电镜-能谱仪(SEM-EDS)显微结构原位分析技术,完成了常规岩矿鉴定手段难以完成的矿物定量识别和鉴定,在矿石中发现了含量可观的氟碳钙铈矿、氟碳铈矿和少量的独居石、褐帘石、铌铁矿、褐钇铌矿、硅钍钇矿、含铌金红石等稀有稀土矿物。其中,氟碳铈矿、独居石、铌铁矿、褐钇铌矿等主要富集于条纹条带状矿石中,与铁氧化物、磷灰石、萤石、菱铁矿和早期黄铜矿、黄铁矿等紧密共生;氟碳钙铈矿、褐帘石、硅钍钇矿、含铌金红石等主要局部富集在脉状矿石中,与石英、方解石、绿泥石和晚期黄铜矿、黄铁矿等紧密共生。显然,在铁氧化物和铜硫化物成矿两个阶段均伴随有稀土成矿作用。结合前人的研究成果,笔者将主矿化期划分为铁氧化物-磷灰石-稀土成矿阶段(Ⅱ-1)和铜硫化物(-金)-稀土成矿阶段(Ⅱ-2)。其中,氟碳铈矿、独居石、铌铁矿、褐钇铌矿等主要形成于Ⅱ-1阶段,其成矿作用可能与Columbia超大陆裂谷化-裂解有关;氟碳钙铈矿、褐帘石、硅钍钇矿、(含铌)金红石等则主要形成于Ⅱ-2阶段,其成矿作用可能与Rodinia超大陆裂解有关。对比研究发现,云南武定迤纳厂铁-铜-稀土矿床与白云鄂博超大型铌-铁-稀土矿床在大地构造背景、成矿元素组合、赋矿岩系、矿物组成、成矿时代、稀土来源等方面均有可对比性,初步确定云南武定迤纳厂铁-铜-稀土矿床是一个"白云鄂博式"矿床。

二、云南武定迤腊厂铜矿含矿石英脉~(40)Ar-~(39)Ar年龄及其意义(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、云南武定迤腊厂铜矿含矿石英脉~(40)Ar-~(39)Ar年龄及其意义(论文提纲范文)

(1)云南关键矿产重要矿床成矿系列(论文提纲范文)

1 云南关键矿产基本特征
    1.1 铅锌矿产基本特征
    1.2 铜钼矿产基本特征
    1.3 锡钨矿产基本特征
    1.4 金银矿产基本特征
    1.5 钛矿产基本特征
    1.6 磷矿产基本特征
    1.7 稀土金属、稀有金属和分散元素矿产基本特征
2 云南关键矿产重要矿床成矿系列
3 云南关键矿产重要矿床成矿系列基本特征
    3.1 滇东南地区与燕山期构造旋回岩浆作用有关的锡、钨、铅锌、银、铜、金、铟、铍、脉石英、祖母绿、水晶矿矿床成矿系列(Mz-y-1)
    3.2 新平-元谋地区与古元古代海相火山岩有关的铜、铁矿床成矿系列(Pt-y-5)
    3.3 滇中地区与中元古代火山-沉积-变质作用有关的铜、铁矿床成矿系列(Pt-y-4)
    3.4 滇中-滇东北地区与寒武纪沉积作用有关的磷块岩、稀土金属、岩盐、石膏、钒、钼、镍、页岩气矿床成矿系列(Pz-c-7)
    3.5 昭通-会泽地区与印支期-燕山期含矿流体作用有关的铅、锌、银、金、重晶石、萤石矿床成矿系列(Mz-h-4)
    3.6 滇中地区与白垩纪含矿流体作用有关的红层砂页岩型铜矿床成矿系列(Mz-h-3)
    3.7 扬子陆块西缘与古近纪“富碱斑岩”有关的金、银、铜、钼、铅锌、铁矿床成矿系列(Cz-y-5)
    3.8 扬子陆块西缘与第四纪表生作用有关的铁矿、钛铁矿、稀土及稀有金属、磷、高岭土、陶瓷土、重晶石、砂锡、砂金、水晶、玛瑙、碧石等宝玉石矿床成矿系列(Cz-f-2)
    3.9 三江(造山带)与第四纪表生作用有关的镍、锰、高岭土、稀土及稀有金属、玛瑙、菱锌矿、石英质玉、砂金矿矿床成矿系列(Cz-f-6)
    3.1 0 兰坪-普洱盆地与古近纪含矿流体作用有关的铅锌、银、铜、钴、金、锑、砷、汞、锶(天青石)矿矿床成矿系列(Cz-h-11)
    3.11三江(造山带)之剪切带与喜马拉雅期含矿流体作用有关的金矿成矿亚系列(Cz-h-10a)
    3.12三江(造山带)与喜马拉雅期富碱斑岩有关的铅、锌、银、钼、铜、金、锑矿床成矿系列(Cz-y-9)
    3.13香格里拉(陆块)与印支期岩浆作用有关的铜、铅锌、银、铁矿矿床成矿系列(Mz-y-6)及香格里拉休瓦促-热林-铜厂沟地区与燕山期花岗岩有关的钨、钼、铜、铅、锌、锑、铁矿床成矿系列(Mz-y-5)
    3.14三江(造山带)与印支期-燕山晚期岩浆侵入作用有关的铜、钨、锡、铁、铅、锌、银、铜、锑、汞、金、脉石英、宝石、白云母、稀土、稀有金属、石英质玉、绿柱石矿矿床成矿系列(Mz-y-7)
    3.15腾冲-陇川地区与第四纪表生作用有关的稀土及稀有金属、高岭土、锰、砂锡矿矿床成矿系列(Cz-f-12)
    3.16腾冲-贡山地区与燕山期花岗岩有关的锡、钨、铅、锌、铁、铜、金、银、硫铁矿、硅灰石、红柱石、萤石、宝石、云母、稀有金属矿床成矿系列(Mz-y-9)
4 结语

(2)东川式铜矿的成矿作用及后期叠加改造:来自硫化物原位硫同位素的制约(论文提纲范文)

1 区域地质背景
2 矿床地质特征
3 样品及分析方法
4 硫同位素组成分析结果
    4.1 因民矿床
    4.2 汤丹矿床
    4.3 滥泥坪矿床
5 讨论
    5.1 硫的来源
        5.1.1 层状矿体
        5.1.2 脉状矿体
    5.2 多期成矿作用
    5.3 对SSC型矿床成因的启示
6 结论

(3)滇中昆阳群主要成矿类型与找矿预测(论文提纲范文)

1 迤纳厂式(铜)铁矿及找矿预测
    1.1 主要成矿特点
    1.2 成矿时代
    1.3 找矿预测
2 东川类型铜矿及找矿预测
    2.1 主要成矿特点
    2.2 成矿时代
    2.3 研究思路
    2.4 找矿预测
3 拖布卡式金矿及找矿预测
    3.1 主要成矿特点
    3.2 成矿时代
    3.3 找矿预测

(4)易门狮子山铜矿床构造控矿规律及成矿年代学研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 交通位置及自然经济地理
        1.1.1 交通位置
        1.1.2 自然地理
    1.2 选题依据及研究意义
    1.3 研究现状及存在问题
        1.3.1 易门狮子山铜矿床研究现状
        1.3.2 刺穿构造研究现状
        1.3.3 成矿年代学研究现状
        1.3.4 主要存在问题
    1.4 研究内容及研究方法
    1.5 主要完成工作量
第二章 成矿地质背景
    2.1 大地构造背景
    2.2 地层
    2.3 构造
        2.3.1 褶皱
        2.3.2 断裂
    2.4 岩浆岩
    2.5 矿产
第三章 矿床地质特征
    3.1 地层
    3.2 构造
        3.2.1 褶皱
        3.2.2 断裂
    3.3 岩浆岩
    3.4 矿体特征
        3.4.1 矿体地质特征
        3.4.2 矿体组分特征
        3.4.3 矿石组构特征
    3.5 围岩蚀变
    3.6 矿床成因
    3.7 成矿期、成矿阶段及矿物生成顺序
第四章 构造控矿规律
    4.1 矿区主要断裂、节理构造特征
    4.2 矿区构造的宏观、微观特征
        4.2.1 矿区构造的宏观特征
        4.2.2 矿区构造的微观特征
    4.3 控矿构造特征
        4.3.1 成矿前构造特征
        4.3.2 成矿期构造特征
        4.3.3 成矿后构造特征
    4.4 构造-蚀变分带特征
        4.4.1 16中段(1187m)构造-蚀变分带特征
        4.4.2 16 中段(1187m)构造蚀变分带规律
    4.5 构造控矿规律
        4.5.1 区域性构造单元决定矿床成矿地质构造背景
        4.5.2 矿区断裂构造控制了矿区矿体的形成和空间展布
    4.6 构造控矿模式
    4.7 本章小结
第五章 矿床成岩成矿年代学研究
    5.1 样品采集和分析方法
        5.1.1 辉绿岩锆石U-Pb测年分析方法
        5.1.2 黄铜矿-斑铜矿Re-Os测年及硫同位素分析方法
    5.2 分析结果
        5.2.1 锆石U-Pb年龄结果
        5.2.2 锆石微量元素结果
        5.2.3 Re-Os同位素测试结果
        5.2.4 S同位素测试结果
    5.3 讨论
        5.3.1 辉绿岩U-Pb锆石年代学讨论
        5.3.2 Re-Os同位素年代学讨论
    5.4 本章小结
第六章 找矿预测及应用效果
    6.1 狮子山深部找矿预测
        6.1.1 矿体的时空关系
        6.1.2 找矿预测模型主要内容
    6.2 矿体空间定位
    6.3 找矿预测
    6.4 深部找矿效果
    6.5 本章小结
第七章 结论
致谢
参考文献
附录A 攻读硕士期间发表论文目录
附录B 攻读硕士期间参加科研项目
附录C 攻读硕士期间参加的会议

(5)康滇地区大红山IOCG矿床成矿作用 ——矿物微区地球化学及年代学的成因启示(论文提纲范文)

作者简介
摘要
abstract
第一章 绪论
    1.1 选题来源、目的及意义
        1.1.1 选题来源及目的
        1.1.2 研究意义
    1.2 国内外研究现状及存在问题
        1.2.1 铁氧化物-铜-金型矿床研究现状
        1.2.2 发展趋势
        1.2.3 康滇地区铁氧化物-铜-金型矿床研究现状
    1.3 研究内容及方案
        1.3.1 关键科学问题
        1.3.2 研究对象
        1.3.3 研究内容
    1.4 完成的实物工作量
第二章 区域地质
    2.1 地层和岩浆岩
        2.1.1 古-中元古代火山-沉积地层和侵入岩
        2.1.2 中-新元古代火山-沉积地层和侵入岩
    2.2 构造
        2.2.1 褶皱
        2.2.2 断裂
    2.3 区域矿产
第三章 测试分析方法
    3.1 全岩微量元素分析
    3.2 物相及主量元素分析
        3.2.1 冷阴极发光
        3.2.2 扫描电镜
        3.2.3 电子探针
    3.3 激光剥蚀ICP-MS微量元素分析
    3.4 B-O-S-Nd同位素分析
    3.5 年代学分析
        3.5.1 LA-ICP-MS U-Pb副矿物年代学
        3.5.2 SHRIMP副矿物U-Pb年代学
        3.5.3 硫化物Re-Os年代学测试
        3.5.4 全岩ID-TIMS年代学测试
第四章 矿床地质特征
    4.1 矿区地质
        4.1.1 地层
        4.1.2 构造
        4.1.3 岩浆岩
    4.2 矿体特征
        4.2.1 I号铁铜矿带
        4.2.2 II号铁矿带
    4.3 蚀变特征及蚀变相
        4.3.1 蚀变相的基本概念
        4.3.2 大红山矿区蚀变相分析
        4.3.3 原岩恢复
    4.4 角砾岩与后期叠加蚀变
        4.4.1 大红山角砾岩
        4.4.2 后期蚀变与矿化的叠加
    4.5 矿物生成顺序与成矿期次
第五章 成矿流体来源和演化
    5.1 硫化物矿物学特征及其原位微量元素和硫同位素分析
        5.1.1 典型样品产状及硫化物显微结构特征
        5.1.2 硫化物微量元素特征
        5.1.3 硫化物硫同位素特征
        5.1.4 讨论
    5.2 电气石主量元素及硼同位素组成示踪成矿流体演化
        5.2.1 电气石产状和实验样品
        5.2.2 分析结果
        5.2.3 讨论
第六章 成矿时代及改造历史
    6.1 热液锆石U-Pb年代学
    6.2 硫化物Re-Os年代学
    6.3 其他含U-Th矿物年代学
        6.3.1 褐帘石
        6.3.2 石榴石
        6.3.3 金红石
        6.3.4 独居石
    6.4 全岩Sm-Nd年代学
    6.5 讨论
        6.5.1 大红山铁铜矿床成矿时代
        6.5.2 成矿后多期热液叠加改造
        6.5.3 多期年龄对同位素年龄解释的启示
第七章 成矿物质来源
    7.1 矿石全岩及主要含稀土矿物微量元素特征
        7.1.1 矿石全岩微量元素特征
        7.1.2 主要稀土矿物元素特征及流体交代的影响
    7.2 全岩及主要稀土矿物Sm/Nd同位素特征
        7.2.1 全岩ID-TIMS Sm-Nd同位素特征
        7.2.2 主要稀土矿物Sm-Nd同位素组成特征
    7.3 讨论
        7.3.1 初始成矿期物质的来源
        7.3.2 后期活化过程中成矿物质的来源
        7.3.3 利用U-Pb和 Sm-Nd系统来探究复杂的热液系统
第八章 矿床成因讨论
    8.1 成矿作用过程与矿床成因模型
    8.2 对康滇地区IOCG成矿作用的指示
        8.2.1 区域IOCG成矿年代学框架
        8.2.2 区域IOCG成矿流体的来源及演化
第九章 结束语
    9.1 主要认识和结论
    9.2 尚未解决的科学问题及对今后工作的建议
致谢
参考文献
附表

(7)云南武定地区铁-铜-金-铀-稀土矿成矿作用与成矿动力学(论文提纲范文)

摘要
abstract
1 引言
    1.1 选题依据与研究意义
    1.2 国内外研究现状
        1.2.1 IOCG矿床国外研究现状
        1.2.2 IOCG矿床国内研究现状
    1.3 研究内容与研究方法
        1.3.1 研究内容
        1.3.2 研究方法
    1.4 完成工作量
    1.5 主要成果
2 区域成矿地质背景
    2.1 大地构造
    2.2 区域地层
    2.3 区域构造
    2.4 区域岩浆岩
    2.5 区域矿产
3 典型矿床地质
    3.1 迤纳厂铁-铜-金-铀-稀土矿床
        3.1.1 矿体地质特征
        3.1.2 矿石物质组成
        3.1.3 矿石结构构造
        3.1.4 围岩蚀变
        3.1.5 成矿阶段
    3.2 邵家坡铜矿床
        3.2.1 矿体地质特征
        3.2.2 矿石物质组成
        3.2.3 矿石结构构造
        3.2.4 围岩蚀变
    3.3 鹅头厂(罗茨)铁矿床
        3.3.1 矿体地质特征
        3.3.2 矿石物质组成
        3.3.3 矿石结构构造
        3.3.4 围岩蚀变
4 岩石地质地球化学
    4.1 实验验测试方法
    4.2 岩石学特征
    4.3 岩石地球化学
        4.3.1 主量元素
        4.3.2 微量元素
        4.3.3 稀土元素
    4.4 锆石U-Pb年代学
        4.4.1 中性岩浆岩年龄
        4.4.2 基性岩浆岩年龄
    4.5 锆石微量元素特征
        4.5.1 锆石微量元素含量
        4.5.2 锆石饱和温度与Ti温度
        4.5.3 陆壳锆石与洋壳锆石
        4.5.4 热液锆石与岩浆锆石
    4.6 同位素地球化学
        4.6.1 Sr-Nd同位素
        4.6.2 Lu-Hf同位素
        4.6.3 O同位素
    4.7 岩浆岩成因
5 矿床地球化学
    5.1 实验测试方法
    5.2 矿石地球化学
        5.2.1 迤纳厂矿床矿石地球化学
        5.2.2 邵家坡矿床矿石地球化学
        5.2.3 鹅头厂矿床矿石地球化学
    5.3 成矿流体特征
        5.3.1 迤纳厂矿床成矿流体特征
        5.3.2 邵家坡矿床成矿流体特征
    5.4 同位素地球化学
        5.4.1 氢、氧同位素
        5.4.2 碳、氧同位素
        5.4.3 硫同位素
        5.4.4 铅同位素
    5.5 ~(40) Ar/~(39)Ar年代学分析
        5.5.1 样品特征
        5.5.2 测试结果
6 成矿作用与地球动力学背景
    6.1 成矿作用
        6.1.1 成矿物质来源
        6.1.2 成矿流体性质
        6.1.3 成矿元素迁移和富集机制
    6.2 成岩成矿动力学背景
    6.3 成岩成矿模式
7 结论
致谢
参考文献
附录

(8)扬子地块西南缘拉拉IOCG矿床地质地球化学研究(论文提纲范文)

摘要
abstract
第1章 前言
    1.1 选题依据和研究意义
        1.1.1 选题来源
        1.1.2 选题依据
        1.1.3 研究意义
    1.2 国内外研究现状
        1.2.1 IOCG矿床研究现状
        1.2.2 IOCG矿床定义
        1.2.3 IOCG矿床时空分布特征
        1.2.4 IOCG矿床主要成矿环境
        1.2.5 IOCG矿床成矿流体及矿床成因
        1.2.6 中国的IOCG矿床
    1.3 拉拉IOCG矿床研究现状与存在的主要问题
        1.3.1 研究现状
        1.3.2 存在的主要问题
    1.4 主要研究内容和研究方法
    1.5 论文主要成果与创新点
        1.5.1 论文主要成果
        1.5.2 论文创新点
    1.6 完成的主要工作量
第2章 区域地质特征
    2.1 区域地层
        2.1.1 古元古界河口群
        2.1.2 古元古界大红山群
        2.1.3 古元古界东川群
        2.1.4 中元古界昆阳群
        2.1.5 中元古界会理群
        2.1.6 新元古界康定群
        2.1.7 震旦系
        2.1.8 古生界-新生界
        2.1.9 康滇地轴元古宇地层演化顺序
    2.2 区域构造
        2.2.1 褶皱构造
        2.2.2 断裂构造
    2.3 区域岩浆岩
        2.3.1 古元古代岩浆岩
        2.3.2 中元古代岩浆岩
        2.3.3 新元古代岩浆岩
    2.4 区域变质作用
    2.5 区域矿产
第3章 矿床地质特征
    3.1 矿区地层
        3.1.1 赋矿层位河口群
        3.1.2 会理群
        3.1.3 白果湾组
    3.2 矿区构造
        3.2.1 褶皱构造
        3.2.2 断裂构造
    3.3 矿区岩浆岩
        3.3.1 基性侵入岩
        3.3.2 中酸性侵入岩
    3.4 角砾岩
    3.5 矿体特征
        3.5.1 矿体埋藏特征
        3.5.2 矿体产状、矿石品位及与围岩关系
    3.6 矿石类型及构造
        3.6.1 矿石类型
        3.6.2 矿石构造
        3.6.3 矿石矿物成分
        3.6.4 矿石化学成分
第4章 矿床成矿期、成矿阶段及矿物成生顺序研究
    4.1 矿床成矿期划分
        4.1.1 成矿期
        4.1.2 成矿阶段初步划分
    4.2 矿物世代
        4.2.1 矿石矿物
        4.2.2 脉石矿物
    4.3 矿床成矿阶段及矿物共生组合
        4.3.1 火山喷发-沉积成矿期
        4.3.2 变质成矿期
        4.3.3 气成-热液成矿期
        4.3.4 热液成矿期
        4.3.5 矿物生成顺序表
    4.4 与前人研究结果对比
第5章 稀土元素地球化学
    5.1 围岩的REE地球化学特征
        5.1.1 样品及分析方法
        5.1.2 分析结果
        5.1.3 REE配分模式及指示意义
    5.2 含钙脉石矿物的REE地球化学
        5.2.1 样品及分析方法
        5.2.2 分析结果
        5.2.3 REE配分模式特征及指示意义
    5.3 REE来源及成矿流体演化特征
    本章小结
第6章 稳定同位素地球化学
    6.1 H-O同位素地球化学特征
        6.1.1 样品及测试方法
        6.1.2 成矿流体氢、氧同位素组成特征
        6.1.3 成矿流体来源与演化特征
    6.2 C-O同位素地球化学特征
        6.2.1 样品及分析方法
        6.2.2 分析结果
        6.2.3 方解石沉淀影响因素及成矿流体中的C质来源
    6.3 S同位素地球化学
        6.3.1 样品及分析方法
        6.3.2 样品的S同位素组成
        6.3.3 S同位素分馏平衡及平衡温度
        6.3.4 气成-热液成矿期成矿流体总S同位素组成特征及硫源
    本章小结
第7章 放射性同位素地球化学
    7.1 独居石原位U-Pb同位素测年
        7.1.1 样品及分析测试方法
        7.1.2 分析结果
        7.1.3 独居石U-Pb年龄指示意义
    7.2 辉钼矿Re-Os同位素测年
        7.2.1 样品及分析方法
        7.2.2 分析结果
        7.2.3 辉钼矿Re-Os同位素年龄指示意义
    7.3 黑云母39Ar-40Ar同位素测年
        7.3.1 样品及分析方法
        7.3.2 分析结果
        7.3.3 黑云母39Ar-40Ar年龄指示意义
    7.4 黄铜矿的Pb-Pb及 Re-Os同位素测年
        7.4.1 黄铜矿的Pb-Pb等时线法测年
        7.4.2 黄铜矿Re-Os等时线法测年
    7.5 拉拉IOCG矿床成矿时代及指示意义
        7.5.1 拉拉IOCG矿床4 期成矿事件及指示意义
        7.5.2 对区域成矿作用的指示意义
    7.6 拉拉IOCG矿床(金属)成矿物质来源探讨
        7.6.1 萤石的Rb-Sr和 Sm-Nd同位素地球化学
        7.6.2 金属成矿物质来源
    本章小结
第8章 流体包裹体地球化学
    8.1 包裹体岩相学特征
    8.2 流体包裹体显微测温及结果
    8.3 高盐度Ib型含石盐子晶多相包裹体的成因及指示意义
        8.3.1 含子晶包裹体的捕获条件及显微热力学行为
        8.3.2 拉拉IOCG矿床中Ib型含石盐子晶多相包裹体成因
        8.3.3 拉拉IOCG矿床中Ib型含石盐子晶多相包裹体的流体来源
    8.4 成矿压力与成矿深度估算
        8.4.1 气成-热液成矿期早阶段成矿压力与成矿深度估算
        8.4.2 气成-热液成矿期晚阶段成矿压力与成矿深度估算
        8.4.3 热液成矿期成矿压力与成矿深度估算
    8.5 成矿流体演化及矿质迁移沉淀机制
        8.5.1 拉拉IOCG矿床成矿流体演化特征
        8.5.2 流体超压机制及富矿角砾岩的形成过程
        8.5.3 矿质的迁移形式及沉淀机制
    本章小结
第9章 岩浆活动与拉拉IOCG矿床成矿
    9.1 康滇地轴元古宙岩浆活动
        9.1.1 古元古代岩浆活动
        9.1.2 中元古代岩浆活动
        9.1.3 新元古代岩浆活动
    9.2 古元古代双峰式岩浆活动与拉拉IOCG矿床火山-沉积期成矿作用
        9.2.1 扬子地块在Columbia超大陆旋回中的构造演化
        9.2.2 古元古代双峰式岩浆活动与扬子地块西南缘区域性IOCG矿化事件
        9.2.3 拉拉IOCG矿床古元古代火山喷发-沉积成矿期成矿作用过程
    9.3 中元古代中酸性岩浆活动与拉拉IOCG矿床气成-热液期成矿作用
        9.3.1 Rodinia超大陆拼贴与扬子地块西南缘中酸性岛弧岩浆事件
        9.3.2 拉拉IOCG矿床中元古代气成-热液成矿期成矿作用过程
    9.4 新元古代基性岩浆侵入活动与拉拉IOCG矿床热液期成矿作用
第10章 成果与认识
致谢
参考文献
攻读学位期间取得学术成果

(9)中国铁氧化物-铜-金(IOCG)矿床的基本特征及研究进展(论文提纲范文)

1 IOCG矿床的定义和特点及成因进展简述
2 中国IOCG矿床的研究沿革
3 中国典型IOCG矿床的基本特征
    3.1 康滇Fe-Cu成矿省
    3.2 东天山阿齐山-雅满苏Fe-Cu成矿带
    3.3 东准噶尔北缘Fe-Cu成矿带
4 中国典型IOCG矿床的成因研究进展
    4.1 康滇Fe-Cu成矿省
        4.1.1 构造-岩浆-成矿时空格架
        4.1.2 成矿流体特点及来源
    4.2 东天山阿齐山-雅满苏成矿带
    4.3 东准噶尔北缘成矿带
5 与全球IOCG矿床对比
6 研究展望

(10)迤纳厂矿床:一个“白云鄂博式”铁-铜-稀土矿床(论文提纲范文)

0 引言
1 地质背景及矿床地质特征
    1.1 区域地质背景
    1.2 矿床地质特征
2 样品与分析方法
    2.1 样品采集
    2.2 主、微量元素分析
    2.3 AMICS测试
        2.3.1 AMICS简介
        2.3.2 实验条件
3 分析结果
    3.1 矿石的化学成分
    3.2 矿石的矿物组成
    3.3 主要稀有、稀土矿物及其特征
        3.3.1 脉状矿石中的稀有稀土矿物
        3.3.2 条纹条带状矿石中的稀有稀土矿物
4 讨论
    4.1 稀有稀土元素的赋存状态
    4.2 矿床成矿期次与成矿作用
        4.2.1 矿化前期Na (-Fe) 蚀变阶段 (Ⅰ)
        4.2.2 铁氧化物-磷灰石-稀土成矿阶段 (Ⅱ-1)
        4.2.3 铜硫化物 (-金) -稀土成矿阶段 (Ⅱ-2)
        4.2.4 矿化后期石英-碳酸盐脉阶段 (Ⅲ)
    4.3“白云鄂博式”矿床的初步确定
    4.4 全球超大陆裂解事件与稀土成矿
5 结论

四、云南武定迤腊厂铜矿含矿石英脉~(40)Ar-~(39)Ar年龄及其意义(论文参考文献)

  • [1]云南关键矿产重要矿床成矿系列[J]. 卢映祥,施玉北,孙涛,曾妍,李蓉,曹晓民,程胜辉. 地质与勘探, 2021(04)
  • [2]东川式铜矿的成矿作用及后期叠加改造:来自硫化物原位硫同位素的制约[J]. 殷学清,林海涛,苏治坤,赵新福. 矿床地质, 2021(01)
  • [3]滇中昆阳群主要成矿类型与找矿预测[J]. 李志伟,桑传才,王雪超. 云南地质, 2020(03)
  • [4]易门狮子山铜矿床构造控矿规律及成矿年代学研究[D]. 丁金金. 昆明理工大学, 2020
  • [5]康滇地区大红山IOCG矿床成矿作用 ——矿物微区地球化学及年代学的成因启示[D]. 苏治坤. 中国地质大学, 2019(05)
  • [6]云南禄丰鹅头厂铁铜矿床中稀土矿物的发现及意义[J]. 温利刚,曾普胜,詹秀春,范晨子,王广,孙冬阳,袁继海,费晓杰. 岩石矿物学杂志, 2019(04)
  • [7]云南武定地区铁-铜-金-铀-稀土矿成矿作用与成矿动力学[D]. 朱利岗. 中国地质大学(北京), 2019
  • [8]扬子地块西南缘拉拉IOCG矿床地质地球化学研究[D]. 黄从俊. 成都理工大学, 2019
  • [9]中国铁氧化物-铜-金(IOCG)矿床的基本特征及研究进展[J]. 陈伟,赵新福,李晓春,周美夫. 岩石学报, 2019(01)
  • [10]迤纳厂矿床:一个“白云鄂博式”铁-铜-稀土矿床[J]. 温利刚,曾普胜,詹秀春,范晨子,孙冬阳,王广,袁继海,费晓杰. 地学前缘, 2018(06)

标签:;  ;  ;  ;  ;  

云南武定雅拉场铜矿床含矿英脉~(40)Ar-~(39)Ar年龄及其意义
下载Doc文档

猜你喜欢