SBS改性沥青混凝土施工质量控制

SBS改性沥青混凝土施工质量控制

一、SBS改性沥青混凝土在施工过程中的质量控制(论文文献综述)

郝志腾[1](2021)在《复合高模量改性剂HRMA改性机理及其混合料性能研究》文中指出为了研究复合高模量改性剂HRMA的改性效果,本文以90-A级石油沥青为基质沥青,复合高模量改性剂HRMA为改性剂,选择掺量为沥青用量11.3%、16.7%、21.8%、26.8%、31.6%的HRMA改性沥青进行试验,研究其改性效果和改性机理,并对HRMA改性沥青混合料的动态力学性能进行研究,与SBS改性沥青混合料的进行比较。具体研究内容和成果如下:(1)通过沥青的针入度、针入度指数PI、当量软化点T800、当量脆点T1.2、软化点、延度、RTFO老化后的质量损失、残留针入度比等指标分析了基质沥青和HRMA改性沥青的性能。研究结果表明,HRMA改性沥青的针入度随着HRMA改性剂掺量的增加而降低,软化点和当量软化点T800随改性剂掺量的增加而升高。提高基质沥青的高稳定性和抗变形能力。但是HRMA改性沥青的延度随HRMA改性剂掺量的增加而减小,当量脆点T1.2增大,即HRMA改性沥青的低温性能有所下降。(2)通过沥青的流变学试验对基质沥青和HRMA改性沥青的高低温性能进行研究,研究结果表明,复合高模量改性剂HRMA改性沥青比基质沥青具有更好的抗车辙性能和更小的剪切变形量,但对沥青的低温抗裂有不利影响。综合考虑沥青的高低温性能和抗疲劳性能,最终选择复合高模量改性剂HRMA的最佳掺量为沥青用量21.8%。(3)通过傅里叶红外光谱试验研究了复合高模量改性剂HRMA的改性机理,研究结果表明HRMA改性剂中的极性官能团化学性质稳定,与基质沥青之间反应属于物理融合,没有新的官能团产生,HRMA改性剂的加入提高了基质沥青中CH2基团的碳-氢键、芳香环中C=C键和C=O键、亚砜基S=O键含量,提高了沥青的黏度和高温稳定性。(4)通过沥青混合料的车辙试验、低温小梁弯曲试验、浸水马歇尔试验、冻融劈裂强度试验和单轴压缩动态模量试验,对HRMA改性沥青混合料的高温稳定性、低温抗裂性、水稳定性和动态力学性能进行了研究,并与SBS改性沥青混合料的性能进行了比较,研究结果表明HRMA改性剂显着提高了沥青混合料的高温稳定性、水稳定性和动态力学特性,但HRMA改性剂使沥青混合料的低温抗裂性有一定下降,HRMA改性沥青混合料的低温抗裂性能比基质沥青混合料的略差,低于SBS改性沥青混合料的低温抗裂性能。

陈梓宁[2](2021)在《玉米秸秆纤维沥青吸附机制及其SMA路用性能研究》文中研究说明中国作为农业大国,每年在生产大量粮食的同时也会产生大量的农副产品秸秆作物,而秸秆的焚烧和堆积均会对环境造成危害。如果将玉米秸秆制作成纤维应用到沥青路面中,不但能够缓解秸秆作物对环境的污染,还能起到变废为宝、节约有限资源的作用,具有较大的环境与经济价值。但是目前如何将玉米秸秆制作成符合沥青路面要求的纤维材料还处于不同程度的研究阶段,同时对于沥青路用玉米秸秆纤维没有相应的技术标准。为此,本文将提出一种符合沥青路面应用玉米秸秆纤维的制备工艺,并给出玉米秸秆纤维的技术评价指标,在此基础上进行玉米秸秆纤维SMA混合料路用性能的调控研究。首先分析了玉米秸秆的组成结构,选取玉米秸秆皮作为制作纤维的原材料。通过皮穣分离得到玉米秸秆皮,对其进行物理以及化学处理,并基于纤维吸油试验结果确定玉米秸秆纤维制备工艺。在此基础上对玉米秸秆纤维的性能进行测试,结合我国交通运输行业标准沥青路面用纤维(JT/T 533—2020)中对絮状木质纤维的技术要求对玉米秸秆纤维性能进行评价,进而提出沥青路用玉米秸秆纤维的评价指标。利用BET试验方法对玉米秸秆纤维的孔隙结构进行分析。基于玉米秸秆纤维吸附沥青质试验,分析了不同掺量下玉米秸秆纤维吸附沥青质的能力,以及单位质量玉米秸秆纤维对不同沥青种类中沥青质的吸附效果。结合吸附动力学以及吸附等温线模型,揭示了玉米秸秆纤维吸附沥青质的动态三阶段吸附机制。利用分子动力学模拟方法,建立了四种不同组分比例的沥青分子模型以及玉米秸秆纤维分子模型,设定分子力场以及计算参数,构建界面分子动力学模型,根据模拟结果分析了玉米秸秆纤维吸附沥青不同组分的规律性,研究表明饱和分和芳香分扩散系数数值较大。对玉米秸秆纤维沥青的高低温性能进行了试验研究,分析了不同掺量下玉米秸秆纤维对沥青基本性质、高温性能以及低温性能的影响。试验结果表明,玉米秸秆纤维能够提高沥青的黏度,改善沥青的温度敏感性,提高沥青的高温性能,且通过提高玉米秸秆纤维掺量是可以达到木质素纤维以及玄武岩纤维对沥青性能的改善效果。基于Han曲线分析,玉米秸秆纤维与沥青具有较好的相容性。当少量的玉米秸秆纤维掺入到沥青中时,纤维在沥青中会起到部分增韧作用,然而随着纤维掺量的增多,纤维在沥青中吸附作用将会更加突出。根据玉米秸秆纤维和玄武岩纤维的理化与力学属性,开展SMA(沥青玛蹄脂碎石)混合料路用性能调控与提升技术研究。基于纤维沥青试验结果,选择不同的玉米秸秆纤维掺量,进行SMA-13混合料配合比设计以及混合料高温性能、低温性能、水稳定性、疲劳性能以及动态模量性能试验研究,结合木质素纤维、玄武岩纤维沥青混合料路用性能,揭示玉米秸秆纤维对SMA混合料性能的提升规律和作用机理。进而设计吸附(玉米秸秆纤维)+增强(玄武岩纤维)型混合纤维,之后进行SMA-13混合料配合比设计以及混合料高温性能、低温性能、水稳定性以及疲劳性能试验研究,明确混合纤维对SMA混合料路用性能的调控原理,最后通过SMA混合料路用性能与经济性对比分析,推荐用于调控和提升SMA混合料性能的玉米秸秆纤维与混合纤维合理掺量。铺筑玉米秸秆纤维/玄武岩纤维SMA-13混合料室内足尺试验场,进行了生产配合比设计,总结路面施工工艺。基于足尺加速加载试验,对玉米秸秆纤维/玄武岩纤维SMA-13面层结构和木质素纤维SMA-13面层结构的车辙深度进行对比分析,研究结果表明玉米秸秆纤维/玄武岩纤维SMA-13面层结构具有更长的使用寿命,这为玉米秸秆纤维沥青混合料的应用和推广提供案例分析以及技术支撑。

牟压强[3](2021)在《环氧沥青超薄罩面关键技术研究》文中进行了进一步梳理我国拥有世界上最大的公路网,截止2019年末,全国公路养护里程数达到了总里程数的98.8%,国家每年投入巨额养护维修资金,针对建设交通强国的目标和建设新一代高性能道路的需求,长寿命路面技术是我国未来路面技术发展的必然选择。超薄罩面是一种能有效改善路表功能性能的材料,既能用于养护也能用于新建路面,符合国家倡导建设“环保、低碳、节能、减排、降噪”道路的要求,具有良好的应用前景。由于超薄罩面力学性能要求高,普通沥青超薄罩面在服役过程中容易在路面结构层间和罩面层发生病害(主要表现为集料削落、脱层、滑移及反射裂缝等),严重影响路面的服务水平和使用寿命。环氧沥青作为一种热固性长寿命材料,具有优异的黏结、抗剪切、高温及耐疲劳性能。为在降低全寿命周期成本的前提下,铺筑高性能长寿命路面,课题组提出将环氧沥青材料应用到超薄罩面层间和面层的方案,以满足超薄罩面较高的力学性能要求。为分析和评价环氧沥青超薄罩面层间和面层的性能,本文系统开展了环氧沥青超薄罩面混合料路用性能、疲劳性能、抗反射裂缝性能及层间黏结性能方面的试验和分析;除此之外,还结合环氧沥青混合料的化学改性特点和环氧沥青混合料“后掺法”施工工艺的工艺特点,针对施工流程中的关键环节展开了室内模拟试验研究;最后将本文的研究成果应用到了工程实践中。主要研究成果及结论如下:(1)路用性能方面的结论:环氧沥青SAC-10混合料马歇尔稳定度达到了85.08k N,浸水残留稳定度比达96.4%,冻融劈裂强度比达83.9%,动稳定度达到了55090次/mm,低温抗拉应变为3012,抗弯拉强度为6.02MPa;假设设计交通量为1×108时,环氧沥青SAC-10混合料的抗拉强度结构系数为2.18,而SBS改性沥青SAC-10混合料的抗拉强度结构系数为4.82,即环氧沥青混合料的抗拉强度结构系数仅为普通沥青的45%。说明环氧沥青SAC-10混合料强度高、抗水损坏能力好、高温稳定性和低温抗裂性能优、抗疲劳性能好,是一种性能优越的长寿命路表材料,采用环氧沥青混合料作为沥青铺装层时,可大大降低铺装结构层的厚度。(2)水泥混凝土面板-环氧沥青超薄罩面加铺层层间黏结性能方面的结论:该类路面结构层间具有较强的层间黏结性能。不同试验温度条件下,环氧沥青黏结材料最佳用量不同;加载速率对剪切强度有很大的影响,两种沥青黏结材料复合试件剪切强度随加载速率的增大而增大;浸水损害、长期老化后,环氧沥青黏结材料黏结性能均显着优于SBS改性沥青,且长期老化后,环氧沥青黏结材料的层间黏结性能反而增长。(3)沥青混凝土做基层-环氧沥青超薄罩面加铺层层间抗剪性能方面的结论:该类路面结构层间具有较强的抗剪强度。针对该路面形式,相比于冷粘结无黏结材料施工工艺,采用热粘结工艺或撒布环氧沥青黏结材料,均会显着提高路面的层间抗剪强度,但热粘结施工工艺对路面层间抗剪强度的增加更为有效;在相同层间处理方式下,超薄罩面级配为SAC-10时路面层间抗剪强度最大,AC-10次之,SAC-13最小。于复合式路面层间同时采用热粘结工艺和撒布环氧沥青黏结材料两种处理方式,不如单独采用其中一种对层间抗剪强度的改善程度大。(4)环氧沥青超薄罩面抗反射裂缝性能方面的结论:推荐0.135mm作为环氧沥青混合料OT(Overlay Tester)试验的目标位移值;环氧沥青混合料相较于SBS改性沥青混合料具有优异的抗反射裂缝性能,冻融破坏对两种沥青混合料抗裂性能的影响比长期老化大;对于最大荷载-周期数曲线,环氧沥青混合料符合对数函数变化规律,而SBS改性沥青混合料符合幂函数变化规律。(5)结合环氧沥青混合料材料特点和环氧沥青混合料“后掺法”施工工艺的工艺特点,对环氧沥青B组分混合料现场待料、环氧沥青混合料现场碾压、环氧沥青A组分添加量、拌和功、养生时间、B组分储存时间及容留时间等展开了室内模拟试验研究,详细分析总结了工程实践过程中可能出现的问题,为环氧沥青超薄罩面施工的实时控制及施工质量的保障提出了相应的措施。(6)以云南武倘寻高速公路(武定—倘甸—寻甸)禄劝1号隧道右幅沥青铺装工程为实体应用,将本文研究成果用于工程实践中。

唐建华[4](2021)在《公路沥青路面施工质量控制影响因素的分析与评价 ——以渭武高速公路为例》文中研究表明随着我国高速公路事业的迅猛发展,不仅为人们的出行带来了极大便利,同时也提高了国民经济的整体水平。然而,在高速公路沥青路面使用过程中,随着路面服役时间的增加,沥青路面的早期破坏形式将逐渐显现出来,从而对路面的使用寿命造成重大影响。其中沥青路面的原材料质量和施工质量水平受到多种因素的影响,因此十分有必要对其影响因素进行分析,提出严格的质量管理控制措施,从而全面提升沥青路面的使用质量,延长沥青路面的使用寿命。本文依托渭武高速公路段,通过对路面三个标段分别从原材料(沥青、集料、矿粉)、混合料配合比、路用性能及现场检测等方面,结合了数理统计分析方法(SPSS软件的应用)、质量控制手段(质量动态控制图的应用)和灰关联分析方法(灰关联度的应用),对其路面质量影响因素进行了较为深入的分析,并提出了相应的质量控制措施,为今后甘肃省其他高速公路的路面铺筑质量积累相关经验。本文的研究结果表明:1.通过数理统计分析方法中的方差、标准差及变异系数等分析方法对原材料(沥青、集料和矿粉)质量的稳定状态和变异性影响最大的关键因素进行了对比分析,结果表明:路面一标和路面二标的A级70号石油的针入度质量分布近似正态分布,相较于路面三标分布较为稳定,其老化后的性能指标也要优于路面三标;各标段六种沥青的三大指标变异系数排序:延度>针入度>软化点,短期老化后的变异系数排序:延度>针入度比,因此各标段需要把沥青的延度和针入度作为关键指标进行严格检测和控制。2.通过油石比质量动态控制图可以看出,路面二标和路面三标的质量控制较为稳定;由灰关联分析结果可以看出,影响混合料高温稳定性的主要因素有:SBS改性沥青的粘度、混合料中2.36mm的通过率、油石比和空隙率;沥青混合料低温抗裂性的影响因素主要有:集料针片状含量、油石比和软化点;沥青混合料水稳定性的主要影响因素有:油石比、粘度和沥青饱和度。3.对铺筑成型后的路面质量进行了现场检测,由灰关联分析可知对路面压实度具有较大的影响因素为面层厚度、碾压温度和油石比;由灰关联分析可知对路面渗水系数具有较大的影响因素为空隙率和油石比。

马宝君[5](2020)在《山区高速公路沥青混凝土桥面铺装质量的控制技术研究》文中提出近年来,随着社会和国民经济的快速发展,交通需求量不断增加,高速公路桥梁等项目日渐增多、建设进程快、发展迅猛成为目前交通行业发展的主要特点。而随着交通行业的不断发展,高速公路桥梁持续进行大力的开发建设,并不断地投入生产运营,导致前期建成的高速公路桥梁势必会出现各种不同的病害。高速公路的桥梁是建设的难点和重点,其中桥面作为病害集中暴发区,总是会成为问题的焦点。高速公路桥面铺装病害的发生很大程度上增加了高速公路的运营成本,更是影响到行车的安全,故需从工程建设的质量进行控制,研究高速公路桥面铺装质量的控制技术,从根本上降低病害的发生,提高高速公路桥梁等的服役时间,降低其工程项目的全寿命周期的造价,并且减少工程养护成本支出,从整体上提升高速公路桥梁等在运营过程中的经济效益。本文以渭武高速公路陇南段的建设为研究背景,研究沥青混凝土桥面铺装层的混合料配合比和组合结构的物理性能指标。首先针对沥青混凝土桥面铺装结构早期损伤及病害成因进行调查研究,分析发现,路面在施工和使用初期,主要有材料原因相关的病害有路面的表层裂缝、面层变形、铺装层表面损坏、层间的粘结防水损坏等。其次分析病害原因,从材料的物理力学性能入手探讨路面铺装层结构,发现初期病害的成因主要有桥面铺装层受力工况和材料的力学性能不相适应、荷载的计算不完全、铺装层间粘结的粘结度不够、原材料质量控制不足等。结果表明:防水层的粘结强度对路面主体结构的整体受力变形影响显着,防水粘结层的质量直接决定公路桥面铺装结构强度和耐久性能;沥青混凝土桥面铺装结构层上面层粗集料宜采用石灰岩及玄武岩等碱性有机制砂,下面层粗集料宜采用石灰岩碎石;细集料宜采用碱性石灰岩机制砂;上面层沥青宜采用SBS改性沥青,基质沥青为70#石油沥青,改性剂掺量为4%;下面层沥青宜采用70#石油改性沥青;沥青混合料矿粉宜采用洁净的优质石灰岩粉为原材料等。最后研究了铺装施工原材料性能的技术性能要求,研究了铺装沥青混合料的配合比设计,总结了沥青施工各环节的控制要点。结果表明:上面层为满足良好的抗车辙、抗滑和抗渗性能,宜采用具有较好的抗疲劳和低温缩裂性能的SMA-13沥青混合料,空隙率控制在3-4.5%之间;下面层采用高温稳定性较好的SUP-20沥青混合料,空隙率控制在4%;为提高路面防水粘结材料的抗剪和抗拉的性能,采用抗渗性能为承受0.05MPa的SBR改性乳化沥青作为桥梁铺装层的主要粘结材料;沥青混凝土桥面铺装层施工质量控制应从混合料的拌和控制、运输控制以及施工控制等各方面进行。

孙学楷[6](2020)在《厂拌改性热再生沥青路面施工过程质量控制与改进研究》文中研究指明全国每年因养护及改扩建产生的SBS改性RAP总量超过3200万吨,且以一定的速率持续增长。应用沥青路面厂拌热再生技术回收利用SBS改性RAP,环保效益与经济价值显着。现行再生技术规范中虽明确了SBS改性RAP可以再生利用,但对如何更好地利用SBS改性RAP并筑成高品质的沥青路面未提出针对性的条款。为更好、更高效地循环利用大体量的SBS改性RAP,研究依托山东省交通运输科技项目“改性沥青混合料绿色循环热再生关键技术及工程应用研究”,针对厂拌热再生SBS改性RAP时的质量控制关键环节及改进措施展开研究。RAP预处理是质量控制中最重要的环节。对具有代表性的RAP预处理工艺调查的基础上,分析比较预处理效果。结果表明反击-转子离心多级联合筛分工艺的RAP分离效率达70%以上,为提高回收料掺量及加强再生混合料质量控制奠定了基础。推荐在破碎设备组合中添加转子离心式破碎机,应用多级联合筛分作业以改进SBS改性RAP的预处理效果。应用性能指标预估方程,以针入度、粘度、软化点、延度为新沥青筛选与定制的关键指标,可以精准再生旧SBS改性沥青。定制沥青再生旧沥青的关键性能指标满足技术要求,推荐将粘韧性作为评价再生改性沥青粘弹特性的关键指标。室内路用性能研究表明,与使用全新集料的混合料相比,改性再生沥青混合料的动态压缩模量提高,承载能力与高温抗变形能力提高,低温性能满足规范要求,抗疲劳性能有所减弱。推荐使用冲击韧性评价再生混合料的疲劳性能,作为混合料设计阶段材料优选、级配优化的评价指标。应用施工智能控制系统可以提高再生沥青路面施工质量控制水平。推荐使用无核密度仪等无损检测技术评估再生沥青路面的施工均匀性,依据评估结果制定后续施工质量的改进措施。现场评估结果表明首件工程的六种路面组合结构的路面平整性、水稳定性、抗滑性及结构强度合格。使用现场生产混合料成型的马歇尔试件与抽取的路面试件进行室内评估,结果表明,与使用全新集料的混合料层相比,再生沥青混合料层的高温稳定性显着提高,低温性能满足规范要求。

张虎[7](2020)在《SAC薄层罩面在连霍高速商丘段养护工程中的应用研究》文中研究说明本论文主要基于连霍高速公路沥青路面主要病害成因及采取相应处置措施。通过对旧沥青路面病害进行调研分析,确定病害类型及损坏程度,依据《公路技术状况评定标准》(JTG 5210-2018)对旧路面进行路面状况损害评价,确定沥青路面状况评价指标PQI为中,并提出旧路面采用薄层罩面沥青混合料进行处置。沥青胶结料的性能对沥青混合料性能产生较大影响。首先沥青胶结料进行性能研究,通过测试针入度、延度、软化点、运动粘度等基本性能指标评价沥青胶结料的感温性、高温稳定性、低温柔韧性。并结合动态剪切流变仪对沥青胶结料的流变形为进行研究,测试其复数剪切模量G*、相位角计算出车辙因子。通过对沥青胶结料基本性能研究,最终优选沥青胶结料为橡胶粉SBS复合改性沥青。在实验室内开展,按照马歇尔配合比设计方法薄层罩面沥青混合料配合比设计,选择SAC-10薄层罩面沥青混合料级配类型,确定最佳油石比为4.85%,并对其高温稳定性、低温抗裂性、水稳定性和抗滑性进行研究,结果表明SAC-10薄层罩面沥青混合料路用性能均能满足规范要求。将SAC-10薄层罩面沥青混合料用于旧路面养护,开展实体工程应用,并对其进行质量监测和经济效益分析。通过对其平整度及路面基本状况进行评价,得出SAC-10薄层罩面沥青混合料能够改善沥青路面的表面功能性,提高驾驶的舒适性。通过对其经济效益分析可知,采用薄层罩面沥青混合料用作为病害处置方案可以减少1/3原材料用量降低建设投资资金。本研究成果对于指导沥青路面病害薄层罩面处置方案具有重要意义。

李贺川[8](2020)在《电磁感应加热沥青混凝土梯度愈合与老化特性研究》文中研究说明由于交通荷载及气候环境的反复作用,沥青路面极易产生裂纹问题,而现有养护技术是在路面出现宏观裂纹以后进行被动维修,存在维修周期长、资源消耗大、成本高等缺点,亟待更为先进的养护技术。基于沥青本身具有一定的自愈合能力,通过感应加热可以提高沥青混凝土的自愈合性能,使沥青路面出现细微裂纹时就自动愈合,这已是近年来国内外正在积极倡导的先进养护理念。然而,现有研究主要关注感应加热后沥青混凝土整体性能的恢复,对感应加热这种梯度加热(加热效率随试件深度逐渐降低)所致的裂纹梯度愈合行为以及感应加热对路面不同深度的沥青胶结料老化影响缺乏深入研究,严重制约了感应加热自愈合沥青混凝土的制备与应用、愈合效果的优化和感应加热设备的设计。为此,本文制备了感应加热自愈合沥青混凝土,深入研究了在感应加热作用下的混凝土梯度加热特性以及感应加热所致的不同深度的沥青及沥青混凝土的梯度愈合行为,建立了沥青混凝土梯度愈合效果的预测方法,并探明了沥青胶结料在感应加热作用下的梯度老化行为。主要成果如下:(1)依据整体强度恢复,确定了基质沥青混凝土和SBS改性沥青混凝土的表层最佳感应加热愈合温度分别为100和130,建立了两种沥青混凝土表层为最佳愈合温度时内部温度随深度增加逐渐降低的分布图谱,为后续研究提供了依据,并基于感应加热设备的性能参数建立了感应磁场与感应温度梯度之间的关系。(2)根据沥青混凝土感应加热作用后的温度梯度分布,从沥青胶结料和沥青混凝土两个层面上研究了沥青混凝土感应加热作用下不同深度处的梯度愈合行为。通过流动行为因子、毛细流动性能和流变模型及参数研究了不同深度处沥青及沥青胶浆的自愈合性能,结果表明:感应加热后,沥青混凝土中基质沥青的流动行为因子和毛细流动活化能均与试件深度呈线性关系,随着试件深度增加,基质沥青的流动行为因子逐渐降低、毛细流动活化能逐渐升高;沥青的粘性指数与试件深度呈指数关系,随着深度增加,沥青的粘性指数逐渐增加,自愈合性能逐渐降低。(3)通过强度恢复试验和微米CT扫描试验研究了感应加热作用下基质沥青混凝土和SBS改性沥青混凝土不同深度处的强度恢复率和裂纹愈合率,其中,深度为40mm处的基质沥青混凝土和改性沥青混凝土的强度恢复率和裂纹愈合率分别比表层低35.9%、23.9%和22.8%、25.6%,建立了基质沥青混凝土和SBS改性沥青混凝土深度和愈合效率的关系模型,基于模型预测的愈合率与实测值误差在±5%以内;基于温度梯度分布和沥青自愈合起始温度确定了两种沥青混凝土的感应加热有效愈合深度分别为52.5mm和56.4mm。建立了沥青混凝土感应加热梯度愈合效果的预测方法,利用15mm厚的薄层试件,模拟了基质沥青混凝土和改性沥青混凝土在加热至五个特定温度后的愈合性能,根据沥青混凝土感应加热后的温度梯度分布图谱(确定五个特定温度对应的深度),即可获得沥青混凝土在该温度梯度下的梯度愈合特性。(4)通过流变性能、化学结构和四组分分析研究了感应加热后沥青性能的变化,探明了多次感应加热对沥青老化程度的影响。研究发现,感应加热会导致沥青产生梯度老化现象。一次感应加热后,沥青的复数模量增大、相位角减小且变化程度随试件深度增加而降低,45mm厚小梁试件的上中下三层中沥青羰基因子分别为原样沥青的1.50倍、1.17倍和1.01倍,沥青四组分的变化幅度随试件深度增加略微增大,沥青自愈合的起始温度略微增加。十次感应加热后沥青发生严重老化,其羰基因子为原样沥青的11.74倍,沥青饱和分减少6.60%、芳香分降低7.37%、胶质增加6.74%、沥青质升高7.23%,沥青达到近牛顿流体的温度从35.8上升到48.7。但老化的沥青混凝土仍具有良好的感应加热自愈合性能,10次感应加热后,沥青混凝土的强度恢复率仍能达到58.3%。

朱瑞峰[9](2020)在《低温条件下薄SBS改性沥青路面结构层施工温度研究》文中进行了进一步梳理随着我国公路工程建设进程的推进,现阶段公路建设项目主要集中在气候差异性显着的欠发达地区。为满足这些地区沥青路面的路用性能需求,往往需要使用高性能改性沥青,而SBS改性沥青高低温性能良好,在这些地区泛用性强。由于这些地区允许施工的季节区间短,SBS改性沥青路面施工过程中无法避免低温施工工况,同时低温施工条件会严重影响路面施工质量。低温条件下路面施工质量控制不当通常会造成沥青老化、温度离析、压实不足以及层间粘结性能差等情况,从而导致路面在早期出现块状裂缝、纵向裂缝和横向裂缝、车辙、波浪拥包、坑槽与松散等病害。部分病害如车辙与纵、横向裂缝等,往往在正常施工路面通车3~5年后才会大量出现。为了控制低温施工路面质量,本文确定了竣工验收阶段的低温路面施工质量评价指标。指标分为两级,一级指标为路面压实度代表值及压实度合格率;二级指标为温度离析程度、层间抗剪强度、压密型车辙深度指数和施工缝处横向裂缝等效面积。通过对低温条件下SBS改性沥青混合料施工温度进行研究,从而确定合理的拌和、摊铺及成型温度范围,能够有效提高低温条件下路面施工质量。1.拌和温度。通过和易性试验确定SBS改性沥青混合料的暂定拌和温度。由于低温施工条件对施工温度的控制要求很高,合理的拌和温度在起到让胶结料与矿料充分结合的同时,也为后续的摊铺压实环节提供温度保障,所以需要对拌和温度范围进行修正,使之适用于低温施工工况。通过室内模拟试验与运输仿真模型计算,结果表明:180℃为拌和温度的安全上限,170℃为拌和温度下限。2.成型温度。和易性试验所确定的狭窄成型温度范围不利于指导施工。通过在低温条件下进行控制初压温度的马歇尔成型试验与轮碾成型试验,分析混合料体积参数、高低温性能与力学性能等指标与温度的关系,从而确定低温条件下SBS改性沥青混合料合理的初压温度范围,并确定最低容许成型后表面温度,再通过旋转压实试验进行验证。结果表明:初压温度范围为150℃~170℃,成型后表面温度应大于115℃。3.摊铺温度。为应对低温施工工况影响,本文将摊铺温度分为下卧层温度与摊铺时混合料温度来进行讨论,通过层间粘结性能确定合理的下卧层温度为(40±10)℃,基于ANSYS Fluent瞬态仿真摊铺温度衰减模型,确定低温条件下SBS改性沥青混合料的摊铺温度为170℃。

吴浩楠[10](2020)在《沥青路面信息化质量控制及寿命预测》文中研究指明信息化时代飞速发展,利用计算机来处理庞大的数据工作以及各种突发状况越来越普遍。然而,在公路建设行业,利用信息化手段对施工过程进行检测和控制起步相对较晚,但通过信息化手段,能够对施工过程进行及时、准确、便捷的把控,能够最大化排除人为因素带来的质量问题。本文依托兰州至海口、渭源至武都段高速公路建设工程,引入“互联网+”技术,对高速公路建设全过程进行信息化精准监控。通过从沥青混合料的拌和、运输、摊铺及压实过程等各环节进行监控,做到最大程度上减少沥青路面产生各类病害产生的可能性,为精准预测依托工程疲劳寿命提供保障。为预测依托工程沥青路面材料的疲劳寿命,取道路铺筑时所拌合的沥青混合料,成型动态模量测试试件,利用UTM-100万能试验材料机,对沥青路面上、中、下面层材料分别开展动态模量试验,分析不同温度和频率等条件下的路用性能参数变化情况。基于时-温等效原理得到动态模量主曲线,分析了不同结构层的动态模量、相位角、车辙因子和疲劳因子;结合Bisar软件模拟路面层底拉伸应变计算结果,提出了利用疲劳寿命来预测依托高速公路路面的使用寿命方程。本文研究结果结果表明:(1)“互联网+”技术可以被用来监控沥青路面施工全过程;无核密度仪可以为高速公路铺筑过程中压实度的无损检测做出良好示范。红外光谱图中可以用966 cm-1与(966+813)cm-1峰值面积比来确定SBS改性沥青当中SBS掺量,并且可以通过傅里叶红外光谱和荧光显微镜对沥青的品牌及其质量进行监控;(2)沥青混合料的动态模量随着温度的降低而增大,并且在零下低温的条件下会有明显的升高。在同样温度条件下,沥青混合料的动态模量会随着加载频率的降低而降低;ATB-25作为下面层有着较好的承载能力,对比SMA-13和Superpave-20,其力学性能更好;(3)采用马歇尔稳定度试验和劈裂试验,分析沥青面材料室内与现场的差异性,得出,在室内试验数据的基础上SMA-13乘以0.9344的系数便是实际路面性能参数、Superpave-20乘以0.9605、ATB-25乘以0.9228;(4)提出了利用疲劳寿命来预测依托高速公路路面的使用寿命方程。

二、SBS改性沥青混凝土在施工过程中的质量控制(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、SBS改性沥青混凝土在施工过程中的质量控制(论文提纲范文)

(1)复合高模量改性剂HRMA改性机理及其混合料性能研究(论文提纲范文)

摘要
abstract
1 绪论
    1.1 引言
    1.2 国内外研究现状
        1.2.1 国外研究与应用现状
        1.2.2 国内研究与应用现状
    1.3 主要研究内容
    1.4 技术路线
2 复合高模量改性剂HRMA改性沥青的制备及常规使用性能研究
    2.1 原材料
        2.1.1 沥青
        2.1.2 高模量改性剂HRMA
    2.2 高模量改性剂HRMA的掺量和改性沥青的制备
    2.3 高模量改性剂HRMA改性沥青的常规性能
        2.3.1 HRMA改性沥青针入度及针入度指数
        2.3.2 HRMA改性沥青软化点
        2.3.3 HRMA改性沥青延度
        2.3.4 HRMA改性沥青RTFOT老化后性能
        2.3.5 灰色关联分析HRMA掺量与改性沥青性能的关系
    2.4 本章小结
3 复合高模量改性剂HRMA改性沥青流变性能和改性机理研究
    3.1 复合高模量改性剂HRMA改性沥青黏度
        3.1.1 Brookfield旋转黏度试验
    3.2 复合高模量改性剂HRMA改性沥青动态剪切流变(DSR)试验
        3.2.1 动态剪切流变试验的试验原理
        3.2.2 试验结果分析
    3.3 复合高模量改性剂HRMA改性沥青弯曲梁流变(BBR)试验
        3.3.1 弯曲梁流变试验的试验原理
        3.3.2 试验结果分析
    3.4 复合高模量改性剂HRMA改性沥青的改性机理研究
        3.4.1 傅里叶红外光谱试验的试验原理
        3.4.2 试验结果分析
    3.5 本章小结
4 复合高模量改性剂HRMA改性沥青混合料的路用性能研究
    4.1 沥青混合料配合比设计
        4.1.1 原材料
        4.1.2 沥青混合料试样的制备
        4.1.3 沥青混合料的最佳油石比
    4.2 沥青混合料的高温性能
        4.2.1 试件成型和试验方案
        4.2.2 车辙试验结果分析
        4.2.3 车辙性能指标
    4.3 沥青混合料的低温抗裂性能
        4.3.1 试件成型和试验方案
        4.3.2 试件结果分析
    4.4 沥青混合料的水稳定性
        4.4.1 沥青混合料的浸水马歇尔试验
        4.4.2 沥青混合料的冻融劈裂试验
    4.5 本章小结
5 复合高模量改性剂HRMA改性沥青混合料的单轴压缩动态模量研究
    5.1 沥青混合料动态模量的基本概念
    5.2 沥青混合料动态模量及相位角结果分析
        5.2.1 动态模量试验
        5.2.2 动态模量试验结果分析
    5.3 动态模量主曲线
        5.3.1 温度对动态模量主曲线的影响
        5.3.2 改性剂对动态模量主曲线的影响
    5.4 本章小结
6 结论与展望
    6.1 主要结论
    6.2 展望
致谢
参考文献
作者简介

(2)玉米秸秆纤维沥青吸附机制及其SMA路用性能研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 课题背景和意义
    1.2 国内外研究现状
        1.2.1 秸秆纤维处理技术的研究
        1.2.2 纤维在沥青混合料中应用的研究
    1.3 存在的问题
    1.4 主要研究内容及技术路线
        1.4.1 主要研究内容
        1.4.2 技术路线
第2章 玉米秸秆纤维制备及性能表征
    2.1 玉米秸秆纤维制备
        2.1.1 原材料与制备用品
        2.1.2 制备工艺设计与优化
    2.2 性能表征与技术指标
        2.2.1 物理性能
        2.2.2 技术指标
    2.3 本章小结
第3章 玉米秸秆纤维的沥青吸附机制
    3.1 物理吸附试验及其规律
        3.1.1 物理吸附试验
        3.1.2 吸附模型与规律
    3.2 沥青吸附的分子模拟与分析
        3.2.1 分子模型构建
        3.2.2 吸附数值模拟与分析
    3.3 本章小结
第4章 玉米秸秆纤维沥青的高低温性能试验研究
    4.1 纤维沥青的制备
    4.2 玉米秸秆纤维沥青性能试验分析
        4.2.1 基本性质
        4.2.2 高温性能分析
        4.2.3 低温性能分析
    4.3 本章小结
第5章 玉米秸秆纤维对SMA路用性能的调控技术研究
    5.1 调控技术方案
        5.1.1 吸附型玉米秸秆纤维SMA混合料设计方案
        5.1.2 吸附+增强型混合纤维SMA混合料设计方案
    5.2 吸附型玉米秸秆纤维SMA混合料路用性能研究
        5.2.1 配合比设计
        5.2.2 高温性能研究
        5.2.3 低温性能研究
        5.2.4 水稳定性研究
        5.2.5 疲劳性能研究
        5.2.6 动态模量试验研究
        5.2.7 SMA混合料路用性能综合分析
    5.3 吸附+增强型混合纤维SMA混合料路用性能研究
        5.3.1 配合比设计
        5.3.2 高温性能研究
        5.3.3 低温性能研究
        5.3.4 水稳定性研究
        5.3.5 疲劳性能研究
        5.3.6 玉米秸秆纤维/玄武岩纤维SMA混合料路用性能综合分析
    5.4 经济性分析与掺量推荐
    5.5 本章小结
第6章 足尺加速加载试验验证
    6.1 室内足尺试验方案
    6.2 混合纤维SMA-13生产配合比设计
        6.2.1 原材料性能
        6.2.2 生产配合比确定
        6.2.3 生产配合比验证
    6.3 关键工艺参数与质量控制
    6.4 加速加载试验研究
        6.4.1 路面加速加载设备参数
        6.4.2 加速加载试验方案
        6.4.3 车辙变化规律分析
    6.5 本章小结
结论
参考文献
附录
攻读博士学位期间发表的论文及其它成果
致谢
个人简历

(3)环氧沥青超薄罩面关键技术研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 研究背景及意义
    1.2 国内外研究现状
        1.2.1 环氧沥青黏结材料及其黏结性能
        1.2.2 沥青路面抗反射裂缝
    1.3 主要研究内容及技术路线
        1.3.1 主要研究内容
        1.3.2 技术路线
第二章 环氧沥青超薄罩面路用性能
    2.1 原材料
        2.1.1 沥青
        2.1.2 集料和填料
        2.1.3 集料筛分结果
    2.2 配合比设计
        2.2.1 设计级配
        2.2.2 马歇尔稳定度试验
    2.3 路用性能测试
        2.3.1 水稳定性
        2.3.2 高温稳定性
        2.3.3 低温抗裂性
        2.3.4 间接拉伸疲劳试验
    2.4 本章小节
第三章 水泥混凝土基层试件层间黏结性能研究
    3.1 试验方案
    3.2 试件制备及层间处理
    3.3 试件加载
    3.4 试验结果分析
        3.4.1 黏层油撒布量及温度对剪切强度的影响
        3.4.2 剪切速率对层间抗剪强度的影响
        3.4.3 复合试件拉拔强度
        3.4.4 界面浸水对界面强度的影响
        3.4.5 界面老化对界面强度的影响
    3.5 本章小结
第四章 沥青混凝土基层试件层间抗剪强度研究
    4.1 试验方案
    4.2 试件制备及层间处理
    4.3 试验测试结果及分析
        4.3.1 试验测试结果
        4.3.2 直观分析
        4.3.3 方差分析
    4.4 本章小结
第五章 环氧沥青超薄罩面抗开裂性能研究
    5.1 试验方案
    5.2 试件制备
    5.3 试件加载
    5.4 试验结果分析
        5.4.1 不同目标位移值下的OT结果
        5.4.2 常规条件下的OT结果
        5.4.3 长期老化后的OT结果
        5.4.4 冻融后的OT结果
        5.4.5 不同条件对抗反射裂缝性能的影响
        5.4.6 OT曲线拟合
    5.5 本章小结
第六章 环氧沥青混合料“后掺法”施工工艺研究
    6.1 环氧沥青混合料“后掺法”施工工艺介绍
    6.2 环氧沥青混合料“后掺法”施工工艺研究
        6.2.1 模拟现场待料
        6.2.2 模拟现场碾压
        6.2.3 模拟环氧沥青A组分添加量
        6.2.4 拌和功及养生时间对混合料性能的影响
        6.2.5 储存时间及容留时间对混合料性能的影响
    6.3 本章小结
第七章 实体工程应用
    7.1 工程概况
    7.2 路面结构组合及混合料选择
    7.3 环氧沥青混合料目标配合比设计
        7.3.1 原材料检测
        7.3.2 目标配合比设计
        7.3.3 性能检验
    7.4 环氧沥青混合料生产配合比设计
        7.4.1 原材料检测
        7.4.2 生产配合比设计
        7.4.3 性能检验
    7.5 施工质量检测
        7.5.1 燃烧炉级配和油石比检验
        7.5.2 室内环氧沥青混合料测试结果
        7.5.3 环氧沥青混合料温度检测
        7.5.4 现场马歇尔击实试验
    7.6 路面铺筑效果评价
        7.6.1 摊铺厚度
        7.6.2 密水性能
        7.6.3 抗滑性能
        7.6.5 平整度
    7.7 本章小结
第八章 结论及展望
    8.1 主要研究结论
    8.2 研究展望
致谢
参考文献
附录:(攻读硕士学位期间撰写的学术论文及获奖情况)

(4)公路沥青路面施工质量控制影响因素的分析与评价 ——以渭武高速公路为例(论文提纲范文)

摘要
abstract
第一章 绪论
    1.1 课题背景及研究意义
    1.2 国内外研究现状
        1.2.1 国外研究现状
        1.2.2 国内研究现状
    1.3 研究内容与技术路线
        1.3.1 研究内容
        1.3.2 技术路线
第二章 数理统计与灰关联分析方法
    2.1 数理统计分析方法
        2.1.1 数学期望值
        2.1.2 方差、标准差及变异系数
        2.1.3 其他数据分布特征数
        2.1.4 统计质量控制原理
        2.1.5 数据收集与分析方法
        2.1.6 质量控制图及基本原理
    2.2 灰关联分析方法
        2.2.1 灰关联分析方法
        2.2.2 灰关联决策
    2.3 本章小结
第三章 原材料质量对比分析
    3.1 工程概况
        3.1.1 依托工程概况
        3.1.2 工程特点
    3.2 沥青质量分析
        3.2.1 沥青质量对比分析
        3.2.2 沥青质量变异性分析
        3.2.3 沥青质量控制措施
    3.3 集料与矿粉质量分析
        3.3.1 集料质量分析
        3.3.2 矿粉质量分析
        3.3.3 集料质量控制措施
        3.3.4 矿粉质量控制措施
    3.4 本章小结
第四章 混合料配合比设计与质量控制分析
    4.1 LM2 标SMA-13 上面层配合比设计
        4.1.1 SMA-13 目标配合比设计
        4.1.2 SMA-13 生产配合比设计
        4.1.3 SMA-13 配合比验证
    4.2 LM2 标SUP-20 中面层配合比设计
        4.2.1 SUP-20 目标配合比设计
        4.2.2 SUP-20 生产配合比设计
        4.2.3 SUP-20 配合比验证
    4.3 LM2 标ATB-25 下面层配合比设计
        4.3.1 ATB-25 目标配合比设计
        4.3.2 ATB-25 生产配合比设计
        4.3.3 ATB-25 配合比验证
    4.4 沥青混合料室内试验指标质量控制
        4.4.1 各标段混合料油石比质量控制
        4.4.2 各标段混合料级配质量控制
        4.4.3 各标段混合料体积指标质量控制对比
    4.5 各标段沥青混合料性路用性能指标对比
        4.5.1 高温稳定性指标对比
        4.5.2 低温抗裂性指标对比
        4.5.3 水稳定性指标对比
    4.6 影响沥青混合料高温稳定性的灰关联分析
    4.7 影响沥青混合料低温抗裂性的灰关联分析
    4.8 影响沥青混合料水稳定性的灰关联分析
    4.9 本章小结
第五章 路面成型质量对比分析与评价
    5.1 各标段压实度对比分析
        5.1.1 影响路面压实度的灰关联分析
        5.1.2 各标段压实度变异性对比
    5.2 各标段渗水系数对比
        5.2.1 影响路面渗水系数的灰关联分析
        5.2.2 渗水系数变异性对比
    5.3 各标段面层厚度对比分析
        5.3.1 面层厚度变异性对比
    5.4 各标段平整度对比分析
        5.4.1 平整度变异性对比
    5.5 路面检测指标影响因素分析与控制措施
        5.5.1 压实度影响因素分析与控制措施
        5.5.2 渗水系数影响因素分析与控制措施
        5.5.3 平整度影响因素分析与控制措施
    5.6 本章小结
第六章 结论与建议
    6.1 主要结论
    6.2 建议
参考文献
致谢

(5)山区高速公路沥青混凝土桥面铺装质量的控制技术研究(论文提纲范文)

摘要
abstract
第一章 绪论
    1.1 概述
    1.2 国内外研究概况
        1.2.1 桥面铺装结构设计概况
        1.2.2 桥面铺装材料发展概况
        1.2.3 桥面铺装防水粘结层发展概况
    1.3 主要研究内容
        1.3.1 选题目的
        1.3.2 本文主要研究内容
第二章 桥面铺装层病害分析及质量控制
    2.1 工程实例介绍
    2.2 桥面铺装层病害调查
    2.3 桥面铺装层病害原因分析
        2.3.1 结构理论与设计的影响
        2.3.2 水的影响
        2.3.3 温度的影响
        2.3.4 施工工艺的影响
        2.3.5 桥面防水粘结层的影响
        2.3.6 桥面铺装层结构受力的影响
    2.4 桥面铺装受力情况分析
        2.4.1 沥青混凝土桥面铺装层的受力特点
        2.4.2 沥青混凝土桥面铺装层结构受力分析
        2.4.3 桥面铺装受力分析结论
    2.5 材料质量控制
        2.5.1 集料的质量控制
        2.5.2 沥青质量控制
        2.5.3 填料质量控制
        2.5.4 纤维的质量控制
        2.5.5 混合料的质量控制及要求
    2.6 本章小结
第三章 桥面铺装桥面防水粘层材料及性能研究
    3.1 桥面铺装防水粘层材料应具备的功能
    3.2 本文研究的防水粘层材料和铺装层结构型式
        3.2.1 本文研究的防水粘层材料
        3.2.2 研究的桥面结构型式
    3.3 不同防水粘层材料的层间抗剪性能
    3.4 不同粘层材料的层间抗拉性能
    3.5 不同粘层材料的层间抗渗性能
        3.5.1 加压渗水试件的制备
        3.5.2 加压渗水装置的开发与加压渗水试验
        3.5.3 加压渗水试验结果分析
    3.6官亭1#特大桥公路桥面铺装工程验证
    3.7 本章小结
第四章 桥面铺装沥青混合料配合比设计方法研究
    4.1 铺装层沥青混合料级配确定
        4.1.1 铺装上层沥青混合料级配的确定
        4.1.2 铺装下层沥青混合料级配的确定
    4.2 铺装上层沥青混合料组成设计研究
        4.2.1 沥青混合料配合比设计
        4.2.2 确定最佳油石比
    4.3 铺装上层沥青混合料组成设计性能验证
        4.3.1 谢伦堡析漏试验检验(烧杯法)
        4.3.2 肯塔堡飞散试验检验
        4.3.3 沥青混合料抗水损害试验检验
        4.3.4 动稳定度试验检验
        4.3.5 低温抗裂性检验
    4.4 铺装下层沥青混合料组成设计研究
        4.4.1 初选级配
        4.4.2 沥青用量的估计
        4.4.3 试验级配的评价
        4.4.4 选择设计级配的沥青用量
        4.4.5 最大次数验证
        4.4.6 设计结论
    4.5 铺装下层沥青混合料组成设计性能验证
        4.5.1 水稳定性检验
        4.5.2 高温稳定性检验
    4.6 本章小结
第五章 沥青混凝土桥面铺装层施工质量控制
    5.1 沥青混合料拌合质量控制
        5.1.1 矿料级配的控制
        5.1.2 拌合温度的控制
        5.1.3 油石比的控制
    5.2 防水粘结层施工质量控制
        5.2.1 桥面板的准备工作
        5.2.2 机械设备要求
        5.2.3 防水粘层材料施工质量控制
    5.3 沥青混合料摊铺质量控制
    5.4 桥面铺装压实质量控制
        5.4.1 合理的碾压温度
        5.4.2 合理的压实速度与遍数
        5.4.3 压实中的其他问题
        5.4.4 沥青混合料碾压工程实例
    5.5 本章小结
第六章渭武高速公路官亭1#特大桥桥面铺装工程性能检测
    6.1 检测指标要求
    6.2 检测结果
    6.3 本章小结
第七章 主要结论及建议
    7.1 主要研究结论
    7.2 进一步研究建议
参考文献
致谢

(6)厂拌改性热再生沥青路面施工过程质量控制与改进研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 研究背景与意义
    1.2 国内外研究现状
        1.2.1 沥青路面再生技术的发展历程
        1.2.2 RAP变异性及预处理研究现状
        1.2.3 SBS改性沥青再生规律研究现状
        1.2.4 沥青路面施工质量控制研究现状
        1.2.5 沥青路面质量评价方法与指标
    1.3 研究内容、技术难点及技术路线
        1.3.1 研究内容
        1.3.2 技术路线
第二章 SBS改性RAP预处理工艺改进
    2.1 破碎设备与筛分方法
        2.1.1 破碎设备
        2.1.2 筛分方法
    2.2 预处理工艺对比
        2.2.1 预处理工艺调查
        2.2.2 预处理效果评价
    2.3 预处理工艺改进
    2.4 本章小结
第三章 新沥青筛选与混合料配合比设计
    3.1 新沥青材料筛选
        3.1.1 筛选流程
        3.1.2 旧沥青性能
        3.1.3 性能预估方程
        3.1.4 新沥青性能
        3.1.5 再生沥青性能
    3.2 配合比设计
        3.2.1 原材料
        3.2.2 配合比与最佳新沥青用量
    3.3 混合料路用性能
        3.3.1 高温性能
        3.3.2 水稳定性
        3.3.3 低温性能
        3.3.4 疲劳性能
        3.3.5 动态模量
    3.4 本章小结
第四章 首件工程施工质量过程控制
    4.1 RAP预处理
    4.2 新沥青筛选与定制
    4.3 生产配合比设计
    4.4 首件工程路面结构
    4.5 混合料级配与沥青用量控制
        4.5.1 下面层混合料
        4.5.2 上面层混合料
    4.6 混合料施工温度控制
        4.6.1 出料温度
        4.6.2 摊铺温度
        4.6.3 碾压温度
    4.7 施工质量智能控制系统
    4.8 本章小结
第五章 首件工程后评估
    5.1 现场评估
        5.1.1 施工均匀性
        5.1.2 路面平整性
        5.1.3 路面抗水损性
        5.1.4 路面抗滑性
        5.1.5 路面承载能力
    5.2 室内评估
        5.2.1 试件制备
        5.2.2 路面高温稳定性
        5.2.3 路面低温抗裂性
    5.3 本章小结
第六章 厂拌改性热再生沥青路面质量改进
    6.1 RAP预处理
    6.2 新沥青筛选与混合料配合比设计
    6.3 施工质量控制
    6.4 质量后评估
结论与展望
    结论
    创新点
    展望
参考文献
攻读博士/硕士学位期间取得的研究成果
致谢
附件

(7)SAC薄层罩面在连霍高速商丘段养护工程中的应用研究(论文提纲范文)

摘要
abstract
第一章 绪论
    1.1 研究背景
        1.1.1 我国高速公路的现状
        1.1.2 连霍高速商丘段概况
        1.1.3 研究目的与意义
    1.2 国内外薄层罩面技术现状
        1.2.1 国外研究现状
        1.2.2 国内研究现状
    1.3 研究内容及技术路线
        1.3.1 研究内容
        1.3.2 技术路线
第二章 连霍高速商丘段沥青路面主要病害及处置方案
    2.1 连霍高速商丘段沥青路面病害调查及分析
        2.1.1 裂缝
        2.1.2 坑槽
        2.1.3 车辙
        2.1.4 泛油
        2.1.5 松散
        2.1.6 沉陷
        2.1.7 波浪和拥包
    2.2 连霍高速商丘段沥青路面状况评定
        2.2.1 路面损坏状况指数(PCI)
        2.2.2 路面技术状况评价
    2.3 薄层罩面处置方案设计
    2.4 本章小结
第三章 薄层罩面沥青胶结料性能研究
    3.1 沥青胶结料原材料及技术指标要求
    3.2 基本性能试验
    3.3 温度敏感性
    3.4 高温性能
        3.4.1 当量软化点
        3.4.2 车辙因子
    3.5 低温柔韧性
    3.6 本章小结
第四章 薄层罩面沥青混合料设计及性能研究
    4.1 原材料
    4.2 薄层罩面沥青混合料配合比设计
        4.2.1 薄层罩面沥青混合料级配选择
        4.2.2 确定最佳油石比
    4.3 路用性能研究
        4.3.1 高温稳定性
        4.3.2 低温抗裂性
        4.3.3 水稳定性
        4.3.4 抗滑性
    4.4 本章小结
第五章 实体工程应用及质量监测
    5.1 沥青路面病害处置措施
    5.2 施工工艺
        5.2.1 施工准备
        5.2.2 拌和
        5.2.3 混合料运输
        5.2.4 混合料摊铺
        5.2.5 路面碾压
        5.2.6 接缝处理
        5.2.7 注意事项
    5.3 质量监测
    5.4 经济效益分析
    5.5 本章小结
第六章 结论及展望
    6.1 结论
    6.2 展望
致谢
参考文献
攻读学位期间取得的成果

(8)电磁感应加热沥青混凝土梯度愈合与老化特性研究(论文提纲范文)

中文摘要
Abstract
第1章 绪论
    1.1 研究背景及意义
    1.2 沥青路面病害的起因及其危害
    1.3 沥青路面传统养护技术
    1.4 沥青路面自愈合技术研究现状
        1.4.1 沥青混合料自愈合概述
        1.4.2 沥青混凝土自愈合技术
        1.4.3 沥青路面感应加热自愈合技术研究现状
    1.5 沥青路面感应加热自愈合技术存在的问题
    1.6 研究内容及技术路线
第2章 原材料及试验方法
    2.1 原材料及基本性能
        2.1.1 沥青
        2.1.2 集料及填料性能
        2.1.3 钢纤维
    2.2 感应加热沥青混凝土的制备与性能
        2.2.1 沥青胶浆制备
        2.2.2 感应加热沥青混合料的制备
        2.2.3 感应加热沥青混合料的性能
    2.3 试验方法
        2.3.1 沥青及胶浆基本实验
        2.3.2 沥青混凝土基本试验
    2.4 本章小结
第3章 沥青混凝土感应加热温度梯度研究
    3.1 表观温度梯度
        3.1.1 感应加热速率
        3.1.2 深度-温度关系
    3.2 感应加热温度梯度模拟
        3.2.1 AC/DC模块
        3.2.2 梯度模拟
    3.3 本章小结
第4章 沥青及胶浆感应加热梯度愈合性能研究
    4.1 沥青及胶浆流动行为因子分析及其梯度变化
        4.1.1 沥青及胶浆流动行为因子测试
        4.1.2 不同深度处沥青及胶浆流动行为因子变化
    4.2 沥青及胶浆毛细流动性能分析及其梯度变化
        4.2.1 沥青及胶浆毛细流动性能测试
        4.2.2 不同深度处沥青及胶浆的毛细流动行为变化
    4.3 沥青及胶浆流变模型和参数分析及参数梯度变化
        4.3.1 沥青及胶浆流变模型和参数分析
        4.3.2 不同深度处沥青及胶浆粘性指数梯度变化
    4.4 本章小结
第5章 沥青混凝土感应加热梯度愈合特性研究
    5.1 沥青混凝土感应加热愈合特性分析
        5.1.1 强度恢复率
        5.1.2 断裂能恢复率
        5.1.3 裂纹愈合率
    5.2 沥青混凝土感应加热愈合特性模拟
        5.2.1 烘箱模拟梯度加热
        5.2.2 温度梯度下的愈合率
        5.2.3 沥青混凝土感应加热作用的梯度愈合效果
        5.2.4 梯度愈合率预测值与实测值的比较
    5.3 沥青混凝土感应加热梯度愈合效果的预测方法
    5.4 沥青混凝土感应加热有效愈合深度
    5.5 本章小结
第6章 沥青胶结料感应加热梯度老化现象研究
    6.1 实验设计
        6.1.1 样品的制备
        6.1.2 感应加热试验
        6.1.3 沥青胶结料提取
        6.1.4 性能测试与表征
    6.2 钢纤维的感应加热速率
    6.3 沥青胶结料感应加热梯度老化分析
        6.3.1 流变性能测试
        6.3.2 化学结构分析
        6.3.3 四组分分析
    6.4 多次感应加热对沥青胶结料的老化影响
        6.4.1 流变性能分析
        6.4.2 化学结构分析
        6.4.3 四组分分析
    6.5 老化后沥青胶结料的自愈合性能
    6.6 本章小结
第7章 结论与展望
    7.1 主要结论
    7.2 展望
致谢
参考文献
博士期间发表的论文、申请专利及参与的科研项目

(9)低温条件下薄SBS改性沥青路面结构层施工温度研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 研究背景
    1.2 国内外研究现状
        1.2.1 热拌改性沥青混合料施工温度研究现状
        1.2.2 沥青路面低温工况应对措施研究现状
        1.2.3 热拌改性沥青路面低温施工现状评述
    1.3 研究内容与技术路线
        1.3.1 主要研究内容
        1.3.2 技术路线
第二章 低温工况下路面施工质量评价指标
    2.1 路面病害产生机理分析
        2.1.1 变形类病害成因分析
        2.1.2 裂缝类病害成因分析
        2.1.3 表面缺损类病害成因分析
    2.2 确定低温工况下施工路面常见病害类型
        2.2.1 低温施工工况对于混合料的影响
        2.2.2 低温施工工况易导致的病害类型
    2.3 确定合理的低温工况下路面施工质量评价指标
        2.3.1 确定低温工况下路面施工质量一级指标
        2.3.2 确定低温工况下路面施工质量二级指标
        2.3.3 建立调查低温工况下路面施工质量评价指标汇总表
    2.4 本章小结
第三章 低温工况下SBS改性沥青混合料拌和温度的确定
    3.1 试验仪器与材料
        3.1.1 试验仪器
        3.1.2 试验材料
    3.2 确定SBS改性沥青混合料暂定拌合温度
        3.2.1 SBS改性沥青以及基质沥青粘度测试
        3.2.2 SBS改性沥青混合料及基质沥青混合料和易性试验
        3.2.3 回归分析确定暂定拌和温度
    3.3 SBS改性沥青混合料拌和温度修正
        3.3.1 SBS改性沥青模拟施工老化试验
        3.3.2 SBS改性沥青混合料拌和温度上限
        3.3.3 混合料运输过程温度逸散仿真模型的建立
        3.3.4 温度逸散模型仿真结果
        3.3.5 SBS改性沥青混合的拌和温度下限
    3.4 本章小结
第四章 低温条件下SBS改性沥青混合料成型温度范围研究
    4.1 原材料与仪器设备
        4.1.1 原材料
        4.1.2 仪器设备
    4.2 低温条件下马歇尔成型试验
        4.2.1 体积指标与温度的关系
        4.2.2 稳定度与温度的关系
        4.2.3 流值与温度的关系
    4.3 低温条件下轮碾成型试验
        4.3.1 体积指标与温度的关系
        4.3.2 车辙试验结果与温度的关系
        4.3.3 弯曲试验结果与温度的关系
    4.4 确定SBS改性沥青混合料成型温度范围
    4.5 本章小结
第五章 低温条件下薄SBS改性沥青路面结构层摊铺温度研究
    5.1 低温施工工况下沥青路面下卧层温度研究
        5.1.1 层间剪切试验
        5.1.2 层间拉伸试验
        5.1.3 低温条件下合理的下卧层温度
    5.2 低温摊铺时SBS改性沥青混合料的温度研究
        5.2.1 摊铺热衰减模型建模及参数值确定
        5.2.2 摊铺热衰减模型仿真结果
        5.2.3 摊铺时混合料温度的确定
    5.3 本章小结
第六章 结论与展望
    6.1 主要结论
    6.2 展望
致谢
参考文献
在学期间发表的论文和取得的学术成果

(10)沥青路面信息化质量控制及寿命预测(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 课题背景及研究意义
    1.2 国内外研究现状
        1.2.1 沥青路面信息化质量控制研究
        1.2.2 动态模量试验研究
        1.2.3 沥青路面寿命预测分析
    1.3 研究内容与技术路线
        1.3.1 研究内容
        1.3.2 技术路线
第2章 原材料及试验方法
    2.1 依托工程概况
    2.2 原材料特性
    2.3 试验方法
        2.3.1 沥青质量控制检测
        2.3.2 沥青混合料路用性能控制检测
        2.3.3 沥青混合料动态模量测试方法
        2.3.4 现场路面压实度检测方法
    2.4 本章小结
第3章 配合比设计优化与路用性能测试
    3.1 ATB-25配合比设计优化
        3.1.1 级配优化过程
        3.1.2 油石比优化
    3.2 Superpave-20 配合比设计优化
        3.2.1 Superpave-20 级配优化
        3.2.2 油石比优化
    3.3 SMA-13配合比设计验证
        3.3.1 级配优化
        3.3.2 油石比优化过程
    3.4 路用性能测试
        3.4.1 高温稳定性
        3.4.2 低温抗裂性
        3.4.3 水稳定性
    3.5 本章小结
第4章 沥青路面施工过程信息化质量监控
    4.1 沥青质量监控
        4.1.1 傅里叶红外光谱
        4.1.2 荧光分析
    4.2 依托工程沥青混合料拌和站监控
        4.2.1 拌和站监控原理
        4.2.2 系统组成
        4.2.3 系统实现功能
        4.2.4 数据监控分析
    4.3 沥青混合料的运输监控
        4.3.1 运输车辆的监控
        4.3.2 运输车辆与摊铺机的对接监控
    4.4 摊铺机的摊铺过程监控
        4.4.1 摊铺速度监控
        4.4.2 摊铺温度监控
    4.5 各类压路机的碾压监控
        4.5.1 系统概述
        4.5.2 碾压轨迹监控
    4.6 路面压实度质量测试
    4.7 本章小结
第5章 路面材料力学参数及疲劳寿命预测
    5.1 不同频率和温度下的力学参数
        5.1.1 动态模量
        5.1.2 相位角与频率关系
        5.1.3 抗车辙因子
        5.1.4 疲劳因子
    5.2 基于时-温等效原理的动态模量主曲线
    5.3 基于动态模量的疲劳寿命预测
        5.3.1 修正因子分析
        5.3.2 疲劳寿命预测理论模型
        5.3.3 沥青路面疲劳寿命工程实例分析
    5.4 讨论
    5.5 本章小结
第六章 结论与展望
    6.1 结论
    6.2 展望
参考文献
致谢
附录 攻读学位期间取得的研究成果

四、SBS改性沥青混凝土在施工过程中的质量控制(论文参考文献)

  • [1]复合高模量改性剂HRMA改性机理及其混合料性能研究[D]. 郝志腾. 内蒙古农业大学, 2021(02)
  • [2]玉米秸秆纤维沥青吸附机制及其SMA路用性能研究[D]. 陈梓宁. 哈尔滨工业大学, 2021(02)
  • [3]环氧沥青超薄罩面关键技术研究[D]. 牟压强. 昆明理工大学, 2021(01)
  • [4]公路沥青路面施工质量控制影响因素的分析与评价 ——以渭武高速公路为例[D]. 唐建华. 兰州理工大学, 2021(01)
  • [5]山区高速公路沥青混凝土桥面铺装质量的控制技术研究[D]. 马宝君. 长安大学, 2020(06)
  • [6]厂拌改性热再生沥青路面施工过程质量控制与改进研究[D]. 孙学楷. 华南理工大学, 2020(02)
  • [7]SAC薄层罩面在连霍高速商丘段养护工程中的应用研究[D]. 张虎. 重庆交通大学, 2020(01)
  • [8]电磁感应加热沥青混凝土梯度愈合与老化特性研究[D]. 李贺川. 武汉理工大学, 2020(01)
  • [9]低温条件下薄SBS改性沥青路面结构层施工温度研究[D]. 朱瑞峰. 重庆交通大学, 2020(01)
  • [10]沥青路面信息化质量控制及寿命预测[D]. 吴浩楠. 兰州理工大学, 2020(12)

标签:;  ;  ;  ;  ;  

SBS改性沥青混凝土施工质量控制
下载Doc文档

猜你喜欢